Risposta:
Il vertice è il punto
Spiegazione:
Permettere
Un approccio è solo rendersi conto che il vertice si verifica a metà strada tra il
Per un approccio più generale che funziona anche quando la funzione quadratica non ha
Questo mette la funzione quadratica in "forma vertice", che ti permette di vedere che il suo valore minimo di
Ecco il grafico:
graph {(x + 6) (x + 4) -20, 20, -10, 10}
Supponiamo che una parabola abbia il vertice (4,7) e passi anche attraverso il punto (-3,8). Qual è l'equazione della parabola in forma di vertice?
In realtà, ci sono due parabole (di forma a vertice) che soddisfano le tue specifiche: y = 1/49 (x- 4) ^ 2 + 7 e x = -7 (y-7) ^ 2 + 4 Ci sono due forme di vertice: y = a (x- h) ^ 2 + k e x = a (yk) ^ 2 + h dove (h, k) è il vertice e il valore di "a" può essere trovato usando un altro punto. Non abbiamo alcun motivo per escludere una delle forme, quindi sostituiamo il vertice dato in entrambi: y = a (x- 4) ^ 2 + 7 e x = a (y-7) ^ 2 + 4 Risolvi per entrambi i valori di un punto (-3,8): 8 = a_1 (-3- 4) ^ 2 + 7 e -3 = a_2 (8-7) ^ 2 + 4 1 = a_1 (-7) ^ 2 e - 7 = a_2 (1) ^ 2 a_1 = 1/49 e a_2 = -7 Ecco le
Qual è l'equazione di una parabola con un focus a (-2, 6) e un vertice a (-2, 9)? Cosa succederebbe se il focus e il vertice fossero commutati?
L'equazione è y = -1 / 12 (x + 2) ^ 2 + 9. L'altra equazione è y = 1/12 (x + 2) * 2 + 6 Il fuoco è F = (- 2,6) e il vertice è V = (- 2,9) Pertanto, la direttrice è y = 12 come il vertice è il punto medio dal fuoco e la direttrice (y + 6) / 2 = 9 =>, y + 6 = 18 =>, y = 12 Qualsiasi punto (x, y) sulla parabola è equidistante dal fuoco e la direttrice y-12 = sqrt ((x + 2) ^ 2 + (y-6) ^ 2) (y-12) ^ 2 = (x + 2) ^ 2 + (y-6) ^ 2 y ^ 2 -24y + 144 = (x + 2) ^ 2 + y ^ 2-12y + 36 12y = - (x + 2) ^ 2 + 108 y = -1 / 12 (x + 2) ^ 2 + 9 grafico {( y + 1/12 (x + 2) ^ 2-9) (y-12) = 0 [-32.47
Un triangolo ha i vertici A, B e C.Il vertice A ha un angolo di pi / 2, il vertice B ha un angolo di (pi) / 3, e l'area del triangolo è 9. Qual è l'area dell'incircle del triangolo?
Area cerchio inscritta = 4.37405 unità quadrate "" Risolvi per i lati del triangolo usando l'Area data = 9 e gli angoli A = pi / 2 e B = pi / 3. Utilizzare le seguenti formule per Area: Area = 1/2 * a * b * sin C Area = 1/2 * b * c * sin A Area = 1/2 * a * c * sin B in modo da avere 9 = 1 / 2 * a * b * sin (pi / 6) 9 = 1/2 * b * c * sin (pi / 2) 9 = 1/2 * a * c * sin (pi / 3) Soluzione simultanea usando queste equazioni risultato a a = 2 * root4 108 b = 3 * root4 12 c = root4 108 risolve metà del perimetro ss = (a + b + c) /2=7.62738 Utilizzando questi lati a, b, c, e s del triangolo , risolvi per r