Risposta:
Area del cerchio inscritta
Spiegazione:
Risolvi i lati del triangolo usando l'Area assegnata
e angoli
Utilizza le seguenti formule per l'area:
La zona
La zona
La zona
così che abbiamo
La soluzione simultanea usando queste equazioni risulta a
risolvi metà del perimetro
Usando questi lati a, b, c e s del triangolo, risolvi il raggio del cerchio inciso
Ora calcola l'area del cerchio inscritto
La zona
La zona
La zona
Dio benedica …. Spero che la spiegazione sia utile.
Il triangolo XYZ è isoscele. Gli angoli di base, l'angolo X e l'angolo Y, sono quattro volte la misura dell'angolo del vertice, angolo Z. Qual è la misura dell'angolo X?
Imposta due equazioni con due incognite. Troverai X e Y = 30 gradi, Z = 120 gradi. Sai che X = Y, ciò significa che puoi sostituire Y per X o viceversa. Puoi calcolare due equazioni: Poiché ci sono 180 gradi in un triangolo, ciò significa: 1: X + Y + Z = 180 Sostituto Y per X: 1: X + X + Z = 180 1: 2X + Z = 180 Noi può anche fare un'altra equazione basata su quell'angolo Z è 4 volte più grande dell'angolo X: 2: Z = 4X Ora, poniamo l'equazione 2 nell'equazione 1 sostituendo Z con 4x: 2X + 4X = 180 6X = 180 X = 30 Inserisci questo valore di X nella prima o nella seconda equaz
Gli angoli A e B sono complementari. La misura dell'angolo B è tre volte la misura dell'angolo A. Qual è la misura dell'angolo A e B?
A = 22.5 e B = 67.5 Se A e B sono complementari, A + B = 90 ........... Equazione 1 La misura dell'angolo B è tre volte la misura dell'angolo AB = 3A ... ........... Equazione 2 Sostituendo il valore di B dall'equazione 2 nell'equazione 1, otteniamo A + 3A = 90 4A = 90 e quindi A = 22.5 Mettendo questo valore di A in entrambe le equazioni e risolvendo per B, otteniamo B = 67,5 Quindi, A = 22,5 e B = 67,5
Un triangolo è sia isoscele che acuto. Se un angolo del triangolo misura 36 gradi, qual è la misura dell'angolo / i più grande del triangolo? Qual è la misura dell'angolo / i più piccolo del triangolo?
La risposta a questa domanda è facile, ma richiede alcune conoscenze generali matematiche e buon senso. Triangolo isoscele: - Un triangolo i cui due lati sono uguali è chiamato triangolo isoscele. Un triangolo isoscele ha anche due angeli uguali. Triangolo acuto: - Un triangolo i cui tutti gli angeli sono maggiori di 0 ^ @ e meno di 90 ^ @, cioè tutti gli angeli sono acuti, è chiamato triangolo acuto. Il triangolo dato ha un angolo di 36 ^ @ ed è sia isoscele che acuto. implica che questo triangolo ha due angeli uguali. Ora ci sono due possibilità per gli angeli. (i) O l'angelo conosciuto