Risposta:
Spiegazione:
# "l'equazione di una parabola nella" forma di vertice di colore (blu) "# è.
#color (rosso) (bar (ul (| colore (bianco) (2/2) colore (nero) (y = a (x-h) ^ 2 + k) colore (bianco) (2/2) |))) # dove (h, k) sono le coordinate del vertice e a è una costante.
# "qui" (h, k) = (8, -1) #
# RArry = a (x-8) ^ 2-1 #
# "per trovare un sostituto" (0, -17) "nell'equazione" #
# -17 = 64a-1rArra = 1/4 di #
# rArry = -1 / 4 (x-8) ^ 2-1larrcolor (rosso) "in forma vertice" # graph {-1/4 (x-8) ^ 2-1 -10, 10, -5, 5}
Supponiamo che una parabola abbia il vertice (4,7) e passi anche attraverso il punto (-3,8). Qual è l'equazione della parabola in forma di vertice?
In realtà, ci sono due parabole (di forma a vertice) che soddisfano le tue specifiche: y = 1/49 (x- 4) ^ 2 + 7 e x = -7 (y-7) ^ 2 + 4 Ci sono due forme di vertice: y = a (x- h) ^ 2 + k e x = a (yk) ^ 2 + h dove (h, k) è il vertice e il valore di "a" può essere trovato usando un altro punto. Non abbiamo alcun motivo per escludere una delle forme, quindi sostituiamo il vertice dato in entrambi: y = a (x- 4) ^ 2 + 7 e x = a (y-7) ^ 2 + 4 Risolvi per entrambi i valori di un punto (-3,8): 8 = a_1 (-3- 4) ^ 2 + 7 e -3 = a_2 (8-7) ^ 2 + 4 1 = a_1 (-7) ^ 2 e - 7 = a_2 (1) ^ 2 a_1 = 1/49 e a_2 = -7 Ecco le
L'equazione f (x) = 3x ^ 2-24x + 8 rappresenta una parabola. Qual è il vertice della parabola?
(4, -40) "la coordinata x del vertice per una parabola in" "la forma standard è" x_ (colore (rosso) "vertice") = - b / (2a) f (x) = 3x ^ 2- 24x + 8 "è nella forma standard" "con" a = 3, b = -24, c = 8 rArrx_ (colore (rosso) "vertice") = - (- 24) / 6 = 4 f (4) = 3 (4) ^ 2-24 (4) + 8 = 48-96 + 8 = -40 rArrcolor (magenta) "vertice" = (4, -40)
Qual è l'equazione di una parabola con un focus a (-2, 6) e un vertice a (-2, 9)? Cosa succederebbe se il focus e il vertice fossero commutati?
L'equazione è y = -1 / 12 (x + 2) ^ 2 + 9. L'altra equazione è y = 1/12 (x + 2) * 2 + 6 Il fuoco è F = (- 2,6) e il vertice è V = (- 2,9) Pertanto, la direttrice è y = 12 come il vertice è il punto medio dal fuoco e la direttrice (y + 6) / 2 = 9 =>, y + 6 = 18 =>, y = 12 Qualsiasi punto (x, y) sulla parabola è equidistante dal fuoco e la direttrice y-12 = sqrt ((x + 2) ^ 2 + (y-6) ^ 2) (y-12) ^ 2 = (x + 2) ^ 2 + (y-6) ^ 2 y ^ 2 -24y + 144 = (x + 2) ^ 2 + y ^ 2-12y + 36 12y = - (x + 2) ^ 2 + 108 y = -1 / 12 (x + 2) ^ 2 + 9 grafico {( y + 1/12 (x + 2) ^ 2-9) (y-12) = 0 [-32.47