Qual è l'equazione della linea che attraversa (1, 2) ed è parallela alla linea la cui equazione è 2x + y - 1 = 0?
Dai un'occhiata: graficamente:
Qual è l'equazione della linea che attraversa (1,2) ed è parallela alla linea la cui equazione è 4x + y-1 = 0?
Y = -4x + 6 Guarda il diagramma La linea data (linea di colore rossa) è - 4x + y-1 = 0 La linea richiesta (linea di colore verde) sta attraversando il punto (1,2) Passo - 1 Trova la pendenza della linea data. È nella forma ax + di + c = 0 La sua pendenza è definita come m_1 = (- a) / b = (- 4) / 1 = -4 Step -2 Le due linee sono parallele. Quindi, le loro pendenze sono uguali La pendenza della linea richiesta è m_2 = m_1 = -4 Passo - 3 L'equazione della linea richiesta y = mx + c Dove- m = -4 x = 1 y = 2 Trova c c + mx = y c + (- 4) 1 = 2 c-4 = 2 c = 2 + 4 = 6 Dopo aver saputo c usare la pendenza -4
Come trovi tutti i punti sulla curva x ^ 2 + xy + y ^ 2 = 7 dove la linea tangente è parallela all'asse xe il punto in cui la linea tangente è parallela all'asse y?
La linea tangente è parallela all'asse x quando la pendenza (quindi dy / dx) è zero ed è parallela all'asse y quando la pendenza (di nuovo, dy / dx) passa a oo o -oo Inizieremo trovando dy / dx: x ^ 2 + xy + y ^ 2 = 7 d / dx (x ^ 2 + xy + y ^ 2) = d / dx (7) 2x + 1y + xdy / dx + 2y dy / dx = 0 dy / dx = - (2x + y) / (x + 2y) Ora, dy / dx = 0 quando il nuimeratore è 0, a condizione che questo non faccia anche il denominatore 0. 2x + y = 0 quando y = -2x Abbiamo ora due equazioni: x ^ 2 + xy + y ^ 2 = 7 y = -2x Solve (per sostituzione) x ^ 2 + x (-2x) + (-2x) ^ 2 = 7 x ^ 2 -2x ^ 2 + 4x ^ 2 = 7 3x