Metà vita:
La risposta è approssimativamente
L'emivita di un determinato materiale radioattivo è di 85 giorni. Una quantità iniziale del materiale ha una massa di 801 kg. Come si scrive una funzione esponenziale che modella il decadimento di questo materiale e quanto rimane del materiale radioattivo dopo 10 giorni?
Sia m_0 = "Massa iniziale" = 801kg "a" t = 0 m (t) = "Massa al tempo t" "La funzione esponenziale", m (t) = m_0 * e ^ (kt) ... (1) "where" k = "constant" "Half life" = 85days => m (85) = m_0 / 2 Ora quando t = 85days then m (85) = m_0 * e ^ (85k) => m_0 / 2 = m_0 * e ^ (85k) => e ^ k = (1/2) ^ (1/85) = 2 ^ (- 1/85) Mettendo il valore di m_0 e e ^ k in (1) otteniamo m (t) = 801 * 2 ^ (- t / 85) Questa è la funzione.che può anche essere scritta in forma esponenziale come m (t) = 801 * e ^ (- (tlog2) / 85) Ora la quantità di material
Di seguito è riportata la curva di decadimento per bismuto-210. Qual è l'emivita del radioisotopo? Quale percentuale dell'isotopo rimane dopo 20 giorni? Quanti periodi di emivita sono passati dopo 25 giorni? Quanti giorni passeranno mentre 32 grammi decadranno a 8 grammi?
Vedi sotto Innanzitutto, per trovare l'emivita da una curva di decadimento, devi tracciare una linea orizzontale dalla metà dell'attività iniziale (o massa del radioisotopo) e quindi tracciare una linea verticale da questo punto all'asse del tempo. In questo caso, il tempo per la massa del radioisotopo di dimezzare è di 5 giorni, quindi questa è l'emivita. Dopo 20 giorni, osserva che rimangono solo 6,25 grammi. Questo è, molto semplicemente, il 6,25% della massa originale. Abbiamo lavorato nella parte i) che l'emivita è di 5 giorni, quindi dopo 25 giorni saranno trascorse 2
Non capisco davvero come fare questo, qualcuno può fare un passo-passo ?: Il grafico di decadimento esponenziale mostra l'ammortamento atteso per una nuova barca, che vende per 3500, in 10 anni. -Scrivi una funzione esponenziale per il grafico -Usare la funzione da trovare
F (x) = 3500e ^ (- (ln (3/7) x) / 3) f (x) = 3500e ^ (- 0,2824326201x) f (x) = 3500e ^ (- 0,28x) Posso solo fare il prima domanda da quando il resto è stato interrotto. Abbiamo a = a_0e ^ (- bx) In base al grafico ci sembra di avere (3,1500) 1500 = 3500e ^ (- 3b) e ^ (- 3b) = 1500/3500 = 3/7 -3b = ln ( 3/7) b = -ln (3/7) /3=-0.2824326201~~-0.28 f (x) = 3500e ^ (- (ln (3/7) x) / 3) f (x) = 3500e ^ (-0.2824326201x) f (x) = 3500e ^ (- 0,28x)