Risposta:
La soluzione è
Spiegazione:
Dato che
Risposta:
Spiegazione:
# "divide entrambi i lati di 5" #
#cancel (5) / cancel (5) (x + 2) = (- 5) / 5 "dare" #
# x + 2 = -1 #
# "sottrarre 2 da entrambi i lati" #
# X = -1-2 = -3 #
#color (rosso) "o" #
# "distribuisci la parentesi" #
# 5x + 10 = -5 #
# "sottrarre 10 da entrambi i lati" #
# 5x = -5-10 = -15 #
# "divide entrambi i lati di 5" #
# (cancel (5) x) / cancel (5) = (- 15) / 5rArrx = -3 #
Mostra che cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Sono un po 'confuso se creo Cos²4π / 10 = cos² (π-6π / 10) e cos²9π / 10 = cos² (π-π / 10), diventerà negativo come cos (180 ° -theta) = - costheta in il secondo quadrante. Come faccio a dimostrare la domanda?
Vedi sotto. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Come faccio a riscrivere le seguenti due espressioni trigonometriche con esponenti non superiori a 1? Come (A) (Sin ^ 3) x (B) (cos ^ 4) x?
Sin3x = 1/4 [3sinx-sin3x] e cos ^ 4 (x) = 1/8 [3 + 4cos2x + cos4x] rarrsin3x = 3sinx-4sin ^ 3x rarr4sin ^ 3x = 3sinx-sin3x rarrsin ^ 3x = 1/4 [ 3sinx-sin3x] Inoltre, cos ^ 4 (x) = [(2cos ^ 2x) / 2] ^ 2 = 1/4 [1 + cos2x] ^ 2 = 1/4 [1 + 2cos2x + cos ^ 2 (2x) ] = 1/8 [2 + 4cos2x + 2cos ^ 2 (2x)] = 1/8 [2 + 4cos2x + 1 + cos4x] = 1/8 [3 + 4cos2x + cos4x]
Quando faccio i moltiplicatori di langrage per il calcolo 3 ... diciamo che ho già trovato i miei punti critici e ne ho ricavato un valore. come faccio a sapere se è un valore minimo o massimo?
Un modo possibile è l'assia (2 ° test derivativo) In genere per verificare se i punti critici sono min o max, si utilizzerà spesso il secondo test derivativo, che richiede di trovare 4 derivate parziali, assumendo f (x, y): f_ {"xx"} (x, y), f _ {"xy"} (x, y), f _ {"yx"} (x, y) e f _ {"yy"} (x, y) Si noti che se sia f _ {"xy"} che f _ {"yx"} sono continui in una regione di interesse, saranno uguali. Una volta che hai definito i 4, puoi usare una matrice speciale chiamata Hessian per trovare il determinante di quella matrice (che, abbastanza conf