L'area di un rettangolo è di 100 pollici quadrati. Il perimetro del rettangolo è di 40 pollici. Un secondo rettangolo ha la stessa area ma un perimetro diverso. Il secondo rettangolo è un quadrato?
No. Il secondo rettangolo non è un quadrato. Il motivo per cui il secondo rettangolo non è un quadrato è perché il primo rettangolo è il quadrato. Ad esempio, se il primo rettangolo (a.k.a il quadrato) ha un perimetro di 100 pollici quadrati e un perimetro di 40 pollici, allora un lato deve avere un valore di 10. Con questo detto, giustifichiamo la dichiarazione di cui sopra. Se il primo rettangolo è effettivamente un quadrato *, allora tutti i lati devono essere uguali. Inoltre, questo avrebbe davvero senso per il motivo che se uno dei suoi lati è 10 allora tutti gli altri suoi lati devo
La larghezza e la lunghezza di un rettangolo sono numeri interi consecutivi. Se la larghezza è diminuita di 3 pollici. quindi l'area del rettangolo risultante è di 24 pollici quadrati Qual è l'area del rettangolo originale?
48 "pollici quadrati" "lascia che la larghezza" = n "allora lunghezza" = n + 2 n "e" n + 2 colore (blu) "siano numeri interi consecutivi" "la larghezza è diminuita di" 3 "pollici" rArr "larghezza "= n-3" area "=" lunghezza "xx" larghezza "rArr (n + 2) (n-3) = 24 rArrn ^ 2-n-6 = 24 rArrn ^ 2-n-30 = 0larrcolor (blu) "in forma standard" "i fattori di - 30 che sommano a - 1 sono + 5 e - 6" rArr (n-6) (n + 5) = 0 "equivalgono a ciascun fattore a zero e risolvono per n" n-6 = 0rArrn = 6
La larghezza di un rettangolo è 3 pollici inferiore alla sua lunghezza. L'area del rettangolo è di 340 pollici quadrati. Quali sono la lunghezza e la larghezza del rettangolo?
Lunghezza e larghezza sono rispettivamente 20 e 17 pollici. Prima di tutto, consideriamo x la lunghezza del rettangolo e la sua larghezza. Secondo l'affermazione iniziale: y = x-3 Ora sappiamo che l'area del rettangolo è data da: A = x cdot y = x cdot (x-3) = x ^ 2-3x ed è uguale a: A = x ^ 2-3x = 340 Quindi otteniamo l'equazione quadratica: x ^ 2-3x-340 = 0 Risolviamolo: x = {-b pm sqrt {b ^ 2-4ac}} / {2a} dove a, b, c provengono da ax ^ 2 + bx + c = 0. Sostituendo: x = {- (- 3) pm sqrt {(- 3) ^ 2-4 cdot 1 cdot (-340)}} / {2 cdot 1} = = {3 pm sqrt {1369}} / {2 } = {3 pm 37} / 2 Otteniamo due soluzion