Risposta:
Dominio:
Gamma:
Spiegazione:
Per il dominio di
Dominio:
Gamma:
guarda gentilmente il grafico
grafico {(y-sqrt (x ^ 2-8)) = 0 -20,20, -10,10}
Dio benedica …. Spero che la spiegazione sia utile
Mostra che cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Sono un po 'confuso se creo Cos²4π / 10 = cos² (π-6π / 10) e cos²9π / 10 = cos² (π-π / 10), diventerà negativo come cos (180 ° -theta) = - costheta in il secondo quadrante. Come faccio a dimostrare la domanda?
Vedi sotto. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Lascia che il dominio di f (x) sia [-2.3] e l'intervallo sia [0,6]. Qual è il dominio e l'intervallo di f (-x)?
Il dominio è l'intervallo [-3, 2]. L'intervallo è l'intervallo [0, 6]. Esattamente com'è, questa non è una funzione, poiché il suo dominio è solo il numero -2.3, mentre il suo intervallo è un intervallo. Ma supponendo che questo sia solo un errore di battitura e che il dominio effettivo sia l'intervallo [-2, 3], questo è il seguente: Sia g (x) = f (-x). Poiché f richiede che la sua variabile indipendente prenda valori solo nell'intervallo [-2, 3], -x (negativo x) deve essere compreso tra [-3, 2], che è il dominio di g. Poiché g ottiene il suo va
Qual è il dominio e l'intervallo di 3x-2 / 5x + 1 e il dominio e l'intervallo di inverso della funzione?
Il dominio è tutto reale eccetto -1/5, che è l'intervallo dell'inverso. L'intervallo è tutto reale tranne 3/5 che è il dominio dell'inverso. f (x) = (3x-2) / (5x + 1) è definito e valori reali per tutti x tranne -1/5, quindi questo è il dominio di f e l'intervallo di f ^ -1 Impostazione y = (3x -2) / (5x + 1) e risolvendo x i rendimenti 5xy + y = 3x-2, quindi 5xy-3x = -y-2, e quindi (5y-3) x = -y-2, quindi, infine x = (- y-2) / (5y-3). Vediamo che y! = 3/5. Quindi l'intervallo di f è tutto reale eccetto 3/5. Questo è anche il dominio di f ^ -1.