Risposta:
Le linee sono perpendicolari.
Spiegazione:
Pendenza di congiungimento punti
Quindi pendenza della linea che unisce
e pendenza della linea che unisce
Vediamo pendenze non uguali e quindi le linee non sono parallele.
Ma come prodotto di piste è
Che tipo di linee passano attraverso i punti (2, 5), (8, 7) e (-3, 1), (2, -2) su una griglia: paralleli, perpendicolari o nessuno dei due?
La linea che attraversa (2,5) e (8,7) non è né parallela né perpendicolare alla linea che attraversa (-3,1) e (2, -2) Se A è la linea che attraversa (2,5) e (8) , 7) quindi ha un colore di inclinazione (bianco) ("XXX") m_A = (7-5) / (8-2) = 2/6 = 1/3 Se B è una linea (-3,1) e (2, -2) quindi ha un colore di inclinazione (bianco) ("XXX") m_B = (- 2-1) / (2 - (- 3)) = (- 3) / (5) == - 3/5 Poiché m_A! = M_B le linee non sono parallele Poiché m_A! = -1 / (m_B) le linee non sono perpendicolari
Quale tipo di linee attraversano i punti (1, 2), (9, 9) e (0,12), (7,4) su una griglia: paralleli, perpendicolari o nessuno dei due?
"linee perpendicolari"> "per confrontare le linee calcolare la pendenza m per ciascuna" • "Linee parallele hanno pendenze uguali" • "Il prodotto delle pendenze delle linee perpendicolari" colore (bianco) (xxx) "è uguale a - 1 "" per calcolare la pendenza m utilizzare la formula del gradiente "colore (blu)" • colore (bianco) (x) m = (y_2-y_1) / (x_2-x_1) "let" (x_1, y_1) = (1 , 2) "e" (x_2, y_2) = (9,9) rArrm = (9-2) / (9-1) = 7/8 "per la seconda coppia di punti di coordinate" "let" (x_1, y_1 ) = 0,12) "e&qu
Quale tipo di linee passano attraverso i punti (-5, -3), (5, 3) e (7, 9), (-3, 3) su una griglia: perpendicolare, parallelo o nessuno dei due?
Le due linee sono parallele Studiando i gradienti dovremmo avere un'indicazione della relazione generica. Considera i primi 2 insiemi di punti come linea 1 Considera i secondi 2 insiemi di punti come linea 2 Sia punto a per la linea 1 sia P_a-> (x_a, y_a) = (- 5, -3) Lascia che il punto b per la linea 1 sia P_b -> (x_b, y_b) = (5,3) Lascia che il gradiente della linea 1 sia m_1 Lascia che il punto c per la linea 2 sia P_c -> (x_c, y_c) = (7,9) Lascia che il punto d per la linea 2 sia P_d -> (x_d, y_d) = (- 3,3) Lascia che il gradiente della linea 2 sia m_2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ colore