Risposta:
o
Spiegazione:
Per formulare l'equazione che attraversa questi due punti possiamo usare la formula del pendio del punto.
Tuttavia, per usare questa formula dobbiamo prima determinare la pendenza della linea.
La pendenza può essere trovata usando la formula:
Dove
Sostituendo i punti del problema ci dà:
Ora possiamo usare la formula della pendenza del punto con la pendenza calcolata e selezionare uno dei punti dal problema.
La formula point-slope afferma:
Dove
Ora possiamo sostituire:
o
Il PERIMETRO di isoscele trapezoidali ABCD è pari a 80 cm. La lunghezza della linea AB è 4 volte più grande della lunghezza di una linea CD che è 2/5 la lunghezza della linea BC (o le linee che sono uguali in lunghezza). Qual è l'area del trapezio?
L'area del trapezio è 320 cm ^ 2. Lascia che il trapezio sia come mostrato di seguito: Qui, se assumiamo il lato più piccolo CD = ae il lato più grande AB = 4a e BC = a / (2/5) = (5a) / 2. Come tale BC = AD = (5a) / 2, CD = a e AB = 4a Quindi il perimetro è (5a) / 2xx2 + a + 4a = 10a Ma il perimetro è 80 cm. Quindi a = 8 cm. e due lati di paillel indicati con aeb sono di 8 cm. e 32 cm. Ora, disegniamo perpendicolari da C e D a AB, che forma due trianges angolati a destra identici, la cui ipotenusa è 5 / 2xx8 = 20 cm. e base è (4xx8-8) / 2 = 12 e quindi la sua altezza è sqrt (20 ^
Qual è l'equazione della linea che attraversa (1, 2) ed è parallela alla linea la cui equazione è 2x + y - 1 = 0?
Dai un'occhiata: graficamente:
Qual è l'equazione della linea che attraversa (1,2) ed è parallela alla linea la cui equazione è 4x + y-1 = 0?
Y = -4x + 6 Guarda il diagramma La linea data (linea di colore rossa) è - 4x + y-1 = 0 La linea richiesta (linea di colore verde) sta attraversando il punto (1,2) Passo - 1 Trova la pendenza della linea data. È nella forma ax + di + c = 0 La sua pendenza è definita come m_1 = (- a) / b = (- 4) / 1 = -4 Step -2 Le due linee sono parallele. Quindi, le loro pendenze sono uguali La pendenza della linea richiesta è m_2 = m_1 = -4 Passo - 3 L'equazione della linea richiesta y = mx + c Dove- m = -4 x = 1 y = 2 Trova c c + mx = y c + (- 4) 1 = 2 c-4 = 2 c = 2 + 4 = 6 Dopo aver saputo c usare la pendenza -4