Risposta:
Spiegazione:
Per prima cosa dobbiamo sapere quante carte ci sono nel mazzo. Dato che abbiamo 4 cuori, 6 quadri, 3 fiori e 6 carte di picche, ci sono
Ora, la probabilità che la prima carta sia una vanga è
Se le prime due carte pescate saranno picche, dopo aver pescato una vanga avremo
Per concludere, la probabilità di pescare una vanga prima (
Supponiamo che una famiglia abbia tre figli. La probabilità che i primi due figli nati siano maschi. Qual è la probabilità che gli ultimi due bambini siano ragazze?
1/4 e 1/4 Ci sono 2 modi per risolvere questo problema. Metodo 1. Se una famiglia ha 3 figli, il numero totale di combinazioni di ragazzi e ragazze è 2 x 2 x 2 = 8 Di questi, due iniziano con (ragazzo, ragazzo ...) Il 3 ° figlio può essere un ragazzo o una ragazza, ma non importa quale. Quindi, P (B, B) = 2/8 = 1/4 Metodo 2. Possiamo calcolare la probabilità che 2 bambini siano maschi come: P (B, B) = P (B) xx P (B) = 1/2 xx 1/2 = 1/4 Nello stesso identico modo, la probabilità di gli ultimi due bambini che sono entrambi ragazze possono essere: (B, G, G) o (G, G, G) rArr 2 delle 8 possibilità.
Due carte vengono pescate da un mazzo di 52 carte, senza sostituzione. Come trovi la probabilità che esattamente una carta sia una carta di credito?
La frazione ridotta è 13/34. Sia S_n l'evento in cui la carta n è una vanga. Quindi notS_n è l'evento in cui la carta n non è una vanga. "Pr (esattamente 1 spade)" = "Pr" (S_1) * "Pr" (notS_2 | S_1) + "Pr" (notS_1) * "Pr" (S_2 | notS_1) = 13/52 * 39/51 + 39 / 52 * 13/51 = 2 * 1/4 * 39/51 = 39/102 = 13/34 In alternativa, "Pr (esattamente 1 vanga)" = 1 - ["Pr (entrambi sono picche)" + "Pr ( nessuno dei due è picche) "] = 1 - [(13/52 * 12/51) + (39/52 * 38/51)] = 1- [1/4 * 12/51 + 3/4 * 38/51] = 1 - [(12 + 114) / (
Supponiamo che una persona scelga una carta a caso da un mazzo di 52 carte e ci dice che la carta selezionata è rossa. Trova la probabilità che la carta sia il tipo di cuori dato che è rossa?
1/2 P ["seme è cuori"] = 1/4 P ["carta è rosso"] = 1/2 P ["seme è cuori | carta è rosso"] = (P ["seme è cuori E carta è rosso "]) / (P [" carta è rossa "]) = (P [" carta è rossa | seme è cuori "] * P [" seme è cuori "]) / (P [" carta è rossa "])) = (1 * P ["seme è cuori"]) / (P ["carta è rosso"]) = (1/4) / (1/2) = 2/4 = 1/2