Risposta:
Spiegazione:
Derivato della regola del prodotto
Dato
#h '= fg' + f'g #
Il problema originale
#f '(x) = (5-x ^ 2) d / dx (x ^ 3-3x + 3) + d / dx (5-x ^ 2) (x ^ 3-3x + 3) #
# => (5-x ^ 2) (3x ^ 2-3) + (-2x) (x ^ 3-3x + 3) #
Ora possiamo moltiplicare e combinare termini simili
# => (15x ^ 2 -15 -3x ^ 4 + 3x ^ 2) + (-2x ^ 4 + 6x ^ 2 -6x) #
# => -5x ^ 4 + 24x ^ 2 -6x-15 #
Come fai a differenziare y = (- 2x ^ 4 + 5x ^ 2 + 4) (- 3x ^ 2 + 2) usando la regola del prodotto?
Vedi la risposta qui sotto:
Come differenziare f (x) = (x ^ 2 + 2) (x ^ 3 + 4) usando la regola del prodotto?
F '(x) = 5x ^ 4 + 6x ^ 2 + 8x f' (x) = 2x xx (x ^ 3 + 4) + 3x ^ 2 xx (x ^ 2 + 2) f '(x) = 2x ^ 4 + 8x + 3x ^ 4 + 6x ^ 2 f '(x) = 5x ^ 4 + 6x ^ 2 + 8x
Come differenziare g (x) = (x ^ 2 + 1) (x ^ 2-3x) usando la regola del prodotto?
G '(x) = 4x ^ 3-6x ^ 2 + 2x-2 g (x) = (x ^ 2 + 1) (x ^ 2-2x) Regola del prodotto: d / dx (uv) = (du) / dxv + u (dv) / dx u = (x ^ 2 + 1) du / dx = 2x v = x ^ 2-2x dv / dx = 2x = 2 d / dx (x ^ 2 + 1) (x ^ 2 -2x) = (du) / dxv + u (du) / dx = 2x (x ^ 2-2x) + (x ^ 2 + 1) (2x-2) = 2x ^ 3-4x ^ 2 + 2x ^ 3 -2x ^ 2 + 2x-2 = 4x ^ 3-6x ^ 2 + 2x-2