Risposta:
Spiegazione:
Trova la pendenza della linea che unisce prima i due punti.
linee che sono perpendicolari: i prodotti delle loro pendenze sono
Una pendenza è il reciproco negativo dell'altro.
(Questo significa capovolgerlo e cambiare il segno.)
La linea perpendicolare ha una pendenza di
Risposta:
+5
Spiegazione:
Nota che non hanno deliberatamente messo l'ordine dei punti in modo che corrisponda a quello che normalmente li leggeresti. Da sinistra a destra sull'asse x.
Imposta il punto più a sinistra come
Imposta il punto più giusto come
Supponiamo che la pendenza della linea data sia
Leggendo da sinistra a destra abbiamo:
La pendenza della linea data è:
La linea perpendicolare ha la pendenza:
Risposta:
Pendenza = 5
Spiegazione:
Per prima cosa, dobbiamo calcolare la pendenza / inclinazione della linea.
Ho intenzione di lasciare
e
C'è una regola che afferma
Se lo lascio
poi
Pertanto, la pendenza è uguale a 5
La linea n passa attraverso i punti (6,5) e (0, 1). Qual è l'intercetta y della linea k, se la linea k è perpendicolare alla linea n e passa attraverso il punto (2,4)?
7 è l'intercetta y della linea k Per prima cosa, troviamo la pendenza per la linea n. (1-5) / (0-6) (-4) / - 6 2/3 = m La pendenza della linea n è 2/3. Ciò significa che la pendenza della linea k, che è perpendicolare alla linea n, è il reciproco negativo di 2/3 o -3/2. Quindi l'equazione che abbiamo finora è: y = (- 3/2) x + b Per calcolare b o l'intercetta y, basta inserire (2,4) nell'equazione. 4 = (- 3/2) (2) + b 4 = -3 + b 7 = b Quindi l'intercetta y è 7
Qual è l'equazione della linea che passa attraverso (0, -1) ed è perpendicolare alla linea che passa attraverso i seguenti punti: (13,20), (16,1)?
Y = 3/19 * x-1 La pendenza della linea passa attraverso (13,20) e (16,1) è m_1 = (1-20) / (16-13) = - 19/3 Sappiamo condizioni di la perpedicolarità tra due linee è un prodotto delle loro pendenze uguale a -1: .m_1 * m_2 = -1 o (-19/3) * m_2 = -1 o m_2 = 3/19 Quindi la linea che passa attraverso (0, -1 ) è y + 1 = 3/19 * (x-0) o y = 3/19 * x-1 grafico {3/19 * x-1 [-10, 10, -5, 5]} [Ans]
Qual è l'equazione della linea che passa attraverso l'origine ed è perpendicolare alla linea che passa attraverso i seguenti punti: (3,7), (5,8)?
Y = -2x Prima di tutto, dobbiamo trovare il gradiente della linea che passa attraverso (3,7) e (5,8) "gradiente" = (8-7) / (5-3) "gradiente" = 1 / 2 Ora poiché la nuova riga è PERPENDICOLARE alla linea che passa attraverso i 2 punti, possiamo usare questa equazione m_1m_2 = -1 dove i gradienti di due linee diverse quando moltiplicati dovrebbero essere uguali a -1 se le linee sono perpendicolari l'una all'altra cioè ad angolo retto. quindi, la tua nuova linea avrebbe un gradiente di 1 / 2m_2 = -1 m_2 = -2 Ora, possiamo usare la formula del gradiente di punto per trovare la tua equa