Risposta:
La derivata di zero è zero. Questo ha senso perché è una funzione costante.
Spiegazione:
Limita la definizione di derivata:
Zero è una funzione di x tale che
Così
Risposta:
La risposta è 0.
Spiegazione:
Come trovi la derivata di f (x) = 3x ^ 5 + 4x usando la definizione limite?
F '(x) = 15x ^ 4 + 4 La regola di base è che x ^ n diventa nx ^ (n-1) Quindi 5 * 3x ^ (5-1) + 1 * 4x ^ (1-1) Quale è f '(x) = 15x ^ 4 + 4
Come trovi la derivata di g (x) = -2 / (x + 1) usando la definizione limite?
= 2 / (x + 1) ^ 2 f '(x) = lim_ (hrarr0) (f (x + h) -f (x)) / h = lim_ (hrarr0) (-2 / (x + h + 1 ) + 2 / (x + 1)) / h = lim_ (hrarr0) ((- 2 (x + 1)) / ((x + h + 1) (x + 1)) + (2 (x + h +) 1)) / ((x + h + 1) (x + 1))) / h = lim_ (hrarr0) ((2h) / ((x + h + 1) (x + 1))) / h = lim_ (hrarr0) 2 / ((x + h + 1) (x + 1)) = 2 / (x + 1) ^ 2
Come si usa la definizione limite della derivata per trovare la derivata di y = -4x-2?
-4 La definizione di derivata è definita come segue: lim (h-> 0) (f (x + h) -f (x)) / h Applichiamo la formula sopra riportata sulla funzione data: lim (h-> 0) (f (x + h) -f (x)) / h = lim (h-> 0) (- 4 (x + h) -2 - (- 4x-2)) / h = lim (h-> 0 ) (- 4x-4h-2 + 4x + 2) / h = lim (h-> 0) ((- 4h) / h) Semplificazione di h = lim (h-> 0) (- 4) = -4