Risposta:
Spiegazione:
1) Lascia
2) "Due volte la sua larghezza" equivale a moltiplicare per
3) "3 metri in meno di" significa sottrarre
4) combinando questi darebbe l'equazione per la lunghezza, chiamiamola
La lunghezza di un rettangolo è 7 piedi più grande della larghezza. Il perimetro del rettangolo è di 26 piedi. Come si scrive un'equazione per rappresentare il perimetro in termini di larghezza (w). Qual è la lunghezza?
Un'equazione per rappresentare il perimetro in termini di larghezza è: p = 4w + 14 e la lunghezza del rettangolo è di 10 piedi. Lascia che la larghezza del rettangolo sia w. Lascia che la lunghezza del rettangolo sia l. Se la lunghezza (l) è 7 piedi più lunga della larghezza, la lunghezza può essere scritta in termini di larghezza come: l = w + 7 La formula per il perimetro di un rettangolo è: p = 2l + 2w dove p è il perimetro, l è la lunghezza e w è la larghezza. Sostituendo w + 7 per l si ottiene un'equazione per rappresentare il perimetro in termini di larghezza: p =
La lunghezza di un rettangolo è due volte la sua larghezza. Se l'area del rettangolo è inferiore a 50 metri quadrati, qual è la larghezza massima del rettangolo?
Chiameremo questa larghezza = x, che rende la lunghezza = 2x Area = lunghezza volte la larghezza, oppure: 2x * x <50-> 2x ^ 2 <50-> x ^ 2 <25-> x <sqrt25-> x <5 Risposta: la larghezza massima è (appena sotto) 5 metri. Nota: in pura matematica, x ^ 2 <25 ti darebbe anche la risposta: x> -5, o combinata -5 <x <+5 In questo esempio pratico, scartiamo l'altra risposta.
La larghezza di un rettangolo è 3 pollici inferiore alla sua lunghezza. L'area del rettangolo è di 340 pollici quadrati. Quali sono la lunghezza e la larghezza del rettangolo?
Lunghezza e larghezza sono rispettivamente 20 e 17 pollici. Prima di tutto, consideriamo x la lunghezza del rettangolo e la sua larghezza. Secondo l'affermazione iniziale: y = x-3 Ora sappiamo che l'area del rettangolo è data da: A = x cdot y = x cdot (x-3) = x ^ 2-3x ed è uguale a: A = x ^ 2-3x = 340 Quindi otteniamo l'equazione quadratica: x ^ 2-3x-340 = 0 Risolviamolo: x = {-b pm sqrt {b ^ 2-4ac}} / {2a} dove a, b, c provengono da ax ^ 2 + bx + c = 0. Sostituendo: x = {- (- 3) pm sqrt {(- 3) ^ 2-4 cdot 1 cdot (-340)}} / {2 cdot 1} = = {3 pm sqrt {1369}} / {2 } = {3 pm 37} / 2 Otteniamo due soluzion