Risposta:
Si prega di vedere la prova qui sotto
Spiegazione:
Abbiamo bisogno
Perciò,
Dividere per tutti i termini di
Risposta:
Vedi Spiegazione
Spiegazione:
Permettere
Dividere da
Dividere da
quindi dimostrato.
Risposta:
Spiegazione:
# "usando le identità trigonometriche" colore (blu) "#
# • colore (bianco) (x) sin (x + y) = sinxcosy + cosxsiny #
# • colore (bianco) (x) cos (x-y) = cosxcosy + sinxsiny #
# "considera il lato sinistro" #
# = (Sinthetacosphi + costhetasinphi) / (+ costhetacosphi sinthetasinphi) #
# "divide i termini su numeratore / denominatore con" costhetacosphi #
# "e cancella i fattori comuni" #
# = ((Sinthetacosphi) / (costhetacosphi) + (costhetasinphi) / (costhetacosphi)) / ((costhetacosphi) / (costhetacosphi) + (sinthetasinphi) / (costhetacosphi)) = ((sintheta) / costheta + sinphi / cosphi) / (1 + sintheta / costhetaxxsinphi / cosphi #
# = (Tantheta + tanphi) / (1 + tanthetatanphi) #
# = "lato destro" rArr "verificato" #
Mostra che cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Sono un po 'confuso se creo Cos²4π / 10 = cos² (π-6π / 10) e cos²9π / 10 = cos² (π-π / 10), diventerà negativo come cos (180 ° -theta) = - costheta in il secondo quadrante. Come faccio a dimostrare la domanda?
Vedi sotto. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Come esprimi cos theta - cos ^ 2 theta + sec theta in termini di peccato theta?
Sqrt (1-sin ^ 2 theta) - (1-sin ^ 2 theta) + 1 / sqrt (1-sin ^ 2 theta) semplifica ulteriormente se necessario. Dai dati dati: come esprimi cos theta-cos ^ 2 theta + sec theta in termini di sin theta? Soluzione: dalle identità trigonometriche fondamentali Sin ^ 2 theta + Cos ^ 2 theta = 1 segue cos theta = sqrt (1-sin ^ 2 theta) cos ^ 2 theta = 1-sin ^ 2 theta anche sec theta = 1 / cos theta quindi cos theta-cos ^ 2 theta + sec theta sqrt (1-sin ^ 2 theta) - (1-sin ^ 2 theta) + 1 / sqrt (1-sin ^ 2 theta) Dio benedica ... Spero che il la spiegazione è utile.
Dimostra che Culla 4x (peccato 5 x + peccato 3 x) = Culla x (peccato 5 x - peccato 3 x)?
# sin a + sin b = 2 sin ((a + b) / 2) cos ((ab) / 2) sin a - sin b = 2 sin ((ab) / 2) cos ((a + b) / 2 ) Lato destro: lettino x (sin 5x - sin 3x) = lettino x cdot 2 sin ((5x-3x) / 2) cos ((5x + 3x) / 2) = cos x / sin x cdot 2 sin x cos 4x = 2 cos x cos 4x Lato sinistro: lettino (4x) (sin 5x + sin 3x) = lettino (4x) cdot 2 sin ((5x + 3x) / 2) cos ((5x-3x) / 2) = {cos 4x} / {sin 4x} cdot 2 sin 4x cos x = 2 cos x cos 4 x Sono uguali quad sqrt #