Risposta:
ยด
Spiegazione:
Per una migliore comprensione fare riferimento alle figure seguenti
Abbiamo a che fare con un solido di 4 facce, cioè un tetraedro.
Convegni (vedi Fig.1)
ho chiamato
# H # l'altezza del tetraedro,#h "'" # l'altezza o l'altezza inclinata delle facce inclinate,#S# ciascuno dei lati del triangolo equilatero della base del tetraedro,# E # ciascuno dei bordi dei triangoli inclinati quando no#S# .
Ci sono anche
# Y # , l'altezza del triangolo equilatero della base del tetraedro,- e
#X# , l'apoftegma di quel triangolo.
Il perimetro di
In Fig. 2, possiamo vederlo
#tan 30 ^ @ = (s / 2) / y # =># Y = (s / 2) * 1 / (sqrt (3) / 3) = 31 / annullare (3) * cancellare (3) / sqrt (3) = 31 / sqrt (3) ~ = 17,898 # Così
#S_ (triangle_ (ABC)) = (s * y) / 2 = (62/3 * 31 / sqrt (3)) / 2 = 961 / (3sqrt (3)) ~ = 184,945 # e quello
# s ^ 2 = x ^ 2 + x ^ 2-2x * x * cos 120 ^ @ #
# s ^ 2 = 2x ^ 2-2x ^ 2 (-1/2) #
# 3x ^ 2 = s ^ 2 # =># X = s / sqrt (3) = 62 / (3sqrt (3) #
In Fig. 3, possiamo vederlo
# E ^ 2 = x ^ 2 + h ^ 2 = (62 / (3sqrt (3))) ^ 2 + 11 ^ 2 = 3844/27 + 121 = (3844 + 3267) / 27 = 7111/27 # =># E = sqrt (7111) / (3sqrt (3)) #
In Fig. 4, possiamo vederlo
# E ^ 2 = h "'" ^ 2 + (s / 2) ^ 2 #
#h "'" ^ 2 = e ^ 2- (s / 2) ^ 2 = (sqrt (7111) / (3sqrt (3))) ^ 2- (31/3) ^ 2 = (7111-3 * 1089) / 27 = 3844/27 #
#h "'" = 62 / (3sqrt (3)) ~ = 11,932 #
Area di un triangolo inclinato
Quindi l'area totale è
La base di una piramide triangolare è un triangolo con angoli in (6, 2), (3, 1) e (4, 2). Se la piramide ha un'altezza di 8, qual è il volume della piramide?
Volume V = 1/3 * Ah = 1/3 * 1 * 8 = 8/3 = 2 2/3 Lascia P_1 (6, 2) e P_2 (4, 2), e P_3 (3, 1) Calcola area della base della piramide A = 1/2 [(x_1, x_2, x_3, x_1), (y_1, y_2, y_3, y_1)] A = 1/2 [x_1y_2 + x_2y_3 + x_3y_1-x_2y_1-x_3y_2-x_1y_3 ] A = 1/2 [(6,4,3,6), (2,2,1,2)] A = 1/2 (6 * 2 + 4 * 1 + 3 * 2-2 * 4-2 * 3-1 * 6) A = 1/2 (12 + 4 + 6-8-6-6) A = 1 Volume V = 1/3 * Ah = 1/3 * 1 * 8 = 8/3 = 2 2/3 Dio vi benedica .... Spero che la spiegazione sia utile.
La base di una piramide triangolare è un triangolo con angoli in (6, 8), (2, 4) e (4, 3). Se la piramide ha un'altezza di 2, qual è il volume della piramide?
Il volume di un prisma triangolare è V = (1/3) Bh dove B è l'area della Base (nel tuo caso sarebbe il triangolo) eh è l'altezza della piramide. Questo è un bel video che mostra come trovare l'area di un video piramidale triangolare Ora la tua prossima domanda potrebbe essere: come trovi l'area di un triangolo con 3 lati
La base di una piramide triangolare è un triangolo con angoli in (3, 4), (6, 2) e (5, 5). Se la piramide ha un'altezza di 7, qual è il volume della piramide?
Unità 7/3 cu Conosciamo il volume della piramide = 1/3 * dell'area dell'unità di altezza * base per cu. Qui, l'area della base del triangolo = 1/2 [x1 (y2-y3) + x2 (y3-y1) + x3 (y1-y2)] dove gli angoli sono (x1, y1) = (3,4) , (x2, y2) = (6,2) e (x3, y3) = (5,5) rispettivamente. Quindi l'area del triangolo = 1/2 [3 (2-5) +6 (5-4) +5 (4-2)] = 1/2 [3 * (- 3) + 6 * 1 + 5 * 2] = 1/2 * 2 = 1 unità sq. Quindi il volume della piramide = 1/3 * 1 * 7 = 7/3 unità cu