Risposta:
Il numero è
Spiegazione:
Lascia che le unità digitino
Lascia che le decine digitino
Come da dati forniti:
1) La cifra di dieci è quattro più della cifra di unità.
2) La somma delle cifre è 10
Risolvendo da eliminazione.
Aggiungere equazioni
scoperta
Quindi, il numero è
La somma delle cifre di un numero a due cifre è 14. La differenza tra la cifra delle decine e la cifra delle unità è 2. Se x è la cifra delle decine e y è la cifra, quale sistema di equazioni rappresenta la parola problema?
X + y = 14 xy = 2 e (possibilmente) "Number" = 10x + y Se xey sono due cifre e ci viene detto che la loro somma è 14: x + y = 14 Se la differenza tra la cifra delle decine x e la unità cifra y è 2: xy = 2 Se x è la cifra delle decine di un "Numero" e y è la sua cifra di unità: "Numero" = 10x + y
La somma delle cifre del numero di tre cifre è 15. La cifra dell'unità è inferiore alla somma delle altre cifre. La cifra delle decine è la media delle altre cifre. Come trovi il numero?
A = 3 ";" b = 5 ";" c = 7 Dato: a + b + c = 15 ................... (1) c <b + a ............................... (2) b = (a + c) / 2 ...... ........................ (3) '~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ Considera l'equazione (3) -> 2b = (a + c) Scrivi l'equazione (1) come (a + c) + b = 15 Per sostituzione questo diventa 2b + b = 15 colori (blu) (=> b = 5) '~~~~~~~~~~~~~~~~~~~~~~~~~ Ora abbiamo: a + 5 + c = 15. .................. (1_a) c <5 + a ........................ ...... (2_a) 5 = (a + c) / 2 .............................. (3_a ) '~~~~~~~~~~~~~~~~~~~~~~~~~~ Da 1_a
La cifra delle unità del numero intero a due cifre è 3 in più rispetto alla cifra delle decine. Il rapporto tra il prodotto delle cifre e l'intero è 1/2. Come trovi questo intero?
36 Supponiamo che la cifra delle decine sia t. Quindi la cifra delle unità è t + 3 Il prodotto delle cifre è t (t + 3) = t ^ 2 + 3t L'intero stesso è 10t + (t + 3) = 11t + 3 Da quello che ci viene detto: t ^ 2 + 3t = 1/2 (11t + 3) Quindi: 2t ^ 2 + 6t = 11t + 3 Quindi: 0 = 2t ^ 2-5t-3 = (t-3) (2t + 1) Cioè: t = 3 " "o" "t = -1/2 Poiché t dovrebbe essere un numero intero positivo inferiore a 10, l'unica soluzione valida ha t = 3. Quindi il numero intero è: 36