Risposta:
Supponendo che ci sia una variazione diretta tra
Spiegazione:
Se c'è una variazione diretta tra
In questo caso
Cosi quando
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
È anche possibile che
in quale caso
e in questo caso
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
… Ovviamente la relazione tra
In questo caso, senza ulteriori informazioni, nessuna soluzione è possibile.
Supponiamo che y varia direttamente con x, e quando y è 16, x è 8. a. Qual è l'equazione di variazione diretta per i dati? b. Cos'è y quando x è 16?
Y = 2x, y = 32 "l'istruzione iniziale è" ypropx "per convertire in un'equazione moltiplica per k la costante" "della variazione" rArry = kx "per trovare k usa la condizione data" "quando" y = 16, x = 8 y = kxrArrk = y / x = 16/8 = 2 "equazione è" colore (rosso) (bar (ul (| colore (bianco) (2/2) colore (nero) (y = 2x) colore (bianco ) (2/2) |))) "quando" x = 16 y = 2xx16 = 32
Mostra che cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Sono un po 'confuso se creo Cos²4π / 10 = cos² (π-6π / 10) e cos²9π / 10 = cos² (π-π / 10), diventerà negativo come cos (180 ° -theta) = - costheta in il secondo quadrante. Come faccio a dimostrare la domanda?
Vedi sotto. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Quando un polinomio è diviso per (x + 2), il resto è -19. Quando lo stesso polinomio è diviso per (x-1), il resto è 2, come si determina il resto quando il polinomio è diviso per (x + 2) (x-1)?
Sappiamo che f (1) = 2 e f (-2) = - 19 dal Teorema dei rimanenti ora troviamo il resto del polinomio f (x) quando diviso per (x-1) (x + 2) Il resto sarà di la forma Ax + B, perché è il resto dopo la divisione di un quadratico. Ora possiamo moltiplicare il divisore per il quoziente Q ... f (x) = Q (x-1) (x + 2) + Ax + B Successivo, inserisci 1 e -2 per x ... f (1) = Q (1-1) (1 + 2) + A (1) + B = A + B = 2 f (-2) = Q (-2-1) (- 2 + 2) + A (-2) + B = -2A + B = -19 Risolvendo queste due equazioni, otteniamo A = 7 e B = -5 Remainder = Ax + B = 7x-5