Ora guardiamo le nostre quantità per vedere ciò di cui abbiamo bisogno e ciò che abbiamo.
Quindi, conosciamo la velocità con cui il volume sta cambiando. Conosciamo anche il volume iniziale, che ci permetterà di risolvere per il raggio. Vogliamo sapere la velocità con cui il raggio cambia dopo
Inseriamo questo valore in per "r" all'interno della derivata:
Lo sappiamo
Risolvere per
Speriamo che questo aiuti!
Joel e Wyatt lanciano una palla da baseball. L'altezza in piedi, della palla da baseball, sopra il terreno è data da h (t) = -16t ^ 2 + 55t + 6, dove t rappresenta il tempo in secondi dopo che la palla è stata lanciata. Quanto dura la palla in aria?
Ho trovato 3.4s, ma controlla il mio metodo !!! Questo è intrigante ...! Avrei impostato h (t) = 6 per indicare i due istanti (dall'equazione quadratica rimanente) quando la palla è a livello del bambino (h = 6 "ft"): infatti se imposti t = 0 (iniziale "lancio" "istantaneo)) ottieni: h (0) = 6 che dovrebbe essere l'altezza dei 2 bambini (suppongo che Joel e Wyatt abbiano la stessa altezza). Quindi -16t ^ 2 + 55t + 6 = 6 Risoluzione utilizzando la formula quadratica: t_1 = 0 t_2 = 55/16 = 3.4s
Trova il volume della figura qui sotto? A) 576 cm cubici. B) 900 cm cubici. C) 1440 cm cubici. D) 785 cm cubici.
C Quindi, volume totale = volume del cilindro + volume del cono = pi r ^ 2 h + 1/3 pi r ^ 2 (25-h) Dato, r = 5 cm, h = 15 cm, il volume è (pi (5) ^ 2 * 15 +1/3 pi (5) ^ 2 * 10) cm ^ 3 = 25pi (15 + 10/3) cm ^ 3 = 1439,9 cm ^ 3
Si lancia una palla in aria da un'altezza di 5 piedi, la velocità della palla è di 30 piedi al secondo. Prendi la palla a 6 piedi da terra. Come usi il modello 6 = -16t ^ 2 + 30t + 5 per scoprire per quanto tempo la palla era nell'aria?
T ~~ 1.84 secondi Ci viene chiesto di trovare il tempo totale in cui la palla era in aria. Risolviamo quindi essenzialmente per t nell'equazione 6 = -16t ^ 2 + 30t + 5. Per risolvere per noi riscriviamo l'equazione precedente impostandola a zero perché 0 rappresenta l'altezza. L'altezza zero implica che la palla sia a terra. Possiamo farlo sottraendo 6 da entrambi i lati 6cancel (colore (rosso) (- 6)) = - 16t ^ 2 + 30t + 5colore (rosso) (- 6) 0 = -16t ^ 2 + 30t-1 Da risolvere per t dobbiamo usare la formula quadratica: x = (-b pm sqrt (b ^ 2-4ac)) / (2a) dove a = -16, b = 30, c = -1 So ... t = (- (30)