Risposta:
Serve come un "arto" per spostare diversi tipi di celle intorno.
Spiegazione:
Molti tipi di cellule devono spostarsi. Ci sono alcuni modi per ottenere questo, il più comune di questi è usando organelli come il flagelli, che sembra una coda sottile ed è composto da proteine. Il flagello gira a tutta velocità, spingendo la cellula in un modo simile al motore di una barca. Tra le cellule che usano flagelli ci sono molti batteri, protozoi e lo spermatozoo umano.
Controlla questa rappresentazione di un batterio e del suo flagello:
Il grafico della funzione f (x) = (x + 2) (x + 6) è mostrato sotto. Quale affermazione sulla funzione è vera? La funzione è positiva per tutti i valori reali di x, dove x> -4. La funzione è negativa per tutti i valori reali di x dove -6 <x <-2.
La funzione è negativa per tutti i valori reali di x dove -6 <x <-2.
La densità del nucleo di un pianeta è rho_1 e quella del guscio esterno è rho_2. Il raggio del nucleo è R e quello del pianeta è 2R. Il campo gravitazionale sulla superficie esterna del pianeta è uguale alla superficie del nucleo, qual è il rapporto rho / rho_2. ?
3 Supponiamo che la massa del nucleo del pianeta sia m e quella del guscio esterno sia m 'Quindi, il campo sulla superficie del nucleo è (Gm) / R ^ 2 E, sulla superficie del guscio sarà (G (m + m ')) / (2R) ^ 2 Dato, entrambi sono uguali, quindi, (Gm) / R ^ 2 = (G (m + m')) / (2R) ^ 2 o, 4m = m + m 'or, m' = 3m Now, m = 4/3 pi R ^ 3 rho_1 (massa = volume * densità) e, m '= 4/3 pi ((2R) ^ 3 -R ^ 3) rho_2 = 4 / 3 pi 7R ^ 3 rho_2 Quindi, 3m = 3 (4/3 pi R ^ 3 rho_1) = m '= 4/3 pi 7R ^ 3 rho_2 Quindi, rho_1 = 7/3 rho_2 or, (rho_1) / (rho_2 ) = 7/3
Quali sono le caratteristiche del grafico della funzione f (x) = (x + 1) ^ 2 + 2? Controlla tutte le applicazioni. Il dominio è tutti numeri reali. L'intervallo è tutti i numeri reali maggiori o uguali a 1. L'intercetta y è 3. Il grafico della funzione è 1 unità in alto e
Il primo e il terzo sono veri, il secondo è falso, il quarto non è finito. - Il dominio è in effetti tutti i numeri reali. Puoi riscrivere questa funzione come x ^ 2 + 2x + 3, che è un polinomio, e come tale ha dominio mathbb {R} L'intervallo non è tutto il numero reale maggiore o uguale a 1, perché il minimo è 2. In fatto. (x + 1) ^ 2 è una traslazione orizzontale (una unità a sinistra) della parabola "strandard" x ^ 2, che ha intervallo [0, infty). Quando aggiungi 2, il grafico viene spostato verticalmente di due unità, quindi l'intervallo you è [2,