Sostituendo nell'equazione di cui sopra otteniamo,
Adesso
Quindi quanto sopra riduce a
Il grafico della funzione f (x) = (x + 2) (x + 6) è mostrato sotto. Quale affermazione sulla funzione è vera? La funzione è positiva per tutti i valori reali di x, dove x> -4. La funzione è negativa per tutti i valori reali di x dove -6 <x <-2.
La funzione è negativa per tutti i valori reali di x dove -6 <x <-2.
Mostra che, (1 + cos theta + i * sin theta) ^ n + (1 + cos theta - i * sin theta) ^ n = 2 ^ (n + 1) * (cos theta / 2) ^ n * cos ( n * theta / 2)?
Vedi sotto. Sia 1 + costheta + isintheta = r (cosalpha + isinalpha), qui r = sqrt ((1 + costheta) ^ 2 + sin ^ 2theta) = sqrt (2 + 2costheta) = sqrt (2 + 4cos ^ 2 (theta / 2 ) -2) = 2cos (theta / 2) e tanalpha = sintheta / (1 + costheta) == (2sin (theta / 2) cos (theta / 2)) / (2cos ^ 2 (theta / 2)) = tan (theta / 2) o alpha = theta / 2 quindi 1 + costheta-isintheta = r (cos (-alpha) + isin (-alpha)) = r (cosalpha-isinalpha) e possiamo scrivere (1 + costheta + isintheta) ^ n + (1 + costheta-isintheta) ^ n usando il teorema di DE MOivre come r ^ n (cosnalpha + isinnalpha + cosnalpha-isinnalpha) = 2r ^ ncosnalpha = 2 * 2 ^ nc
Come si dimostra: secx - cosx = sinx tanx?
Usando le definizioni di secx e tanx, insieme all'identità sin ^ 2x + cos ^ 2x = 1, abbiamo secx-cosx = 1 / cosx-cosx = 1 / cosx-cos ^ 2x / cosx = (1-cos ^ 2x ) / cosx = sin ^ 2x / cosx = sinx * sinx / cosx = sinxtanx