Come si differenzia f (x) = 2x * sinx * cosx?

Come si differenzia f (x) = 2x * sinx * cosx?
Anonim

Risposta:

#f '(x) = + 2sinxcosx 2xcos ^ 2x-2xsin ^ 2x #

Spiegazione:

Usa la regola del prodotto:

# F = ghk # => # F '= g'hk + gh'k + ghk' #

Con:

# G = 2x # => # G '= 2x #

# H = sinx # => # H '= cosx #

# K = cosx # => #k '= - sinx #

Abbiamo quindi:

#f '(x) = + 2sinxcosx 2xcos ^ 2x-2xsin ^ 2x #

Risposta:

#f '(x) = 2sin (x) cos (x) + 2x (cos ^ 2 (x) -sin ^ 2 (x)) #

Spiegazione:

#f '(x) = (2x)' cdot (sin (x) cdot cos (x)) + 2x cdot (sin (x) cdot cos (x)) '#

# (2x) '= 2 #

# (sin (x) cdot cos (x)) '= sin (x)' cdot cos (x) + sin (x) cdot cos (x) '#

# = cos (x) cdot cos (x) + sin (x) cdot (-sin (x)) #

# = Cos ^ 2 (x) -sin ^ 2 (x) #

#f '(x) = 2sin (x) cos (x) + 2x (cos ^ 2 (x) -sin ^ 2 (x)) #