Risposta:
Spiegazione:
# "supponendo che tu intenda" f (x) = 1 / (3x-2) # Il denominatore di f (x) non può essere zero in quanto ciò renderebbe f (x) indefinito. Equating the denominator to zero e solving dà il valore che x non può essere.
# "solve" 3x-2 = 0rArrx = 2 / 3larrcolor (rosso) "valore escluso" #
# "dominio è" x inRR, x! = 2/3 #
# (- oo, 2/3) uu (2/3, oo) larrcolor (blu) "in notazione intervallo" # graph {1 / (3x-2) -10, 10, -5, 5}
Il grafico della funzione f (x) = (x + 2) (x + 6) è mostrato sotto. Quale affermazione sulla funzione è vera? La funzione è positiva per tutti i valori reali di x, dove x> -4. La funzione è negativa per tutti i valori reali di x dove -6 <x <-2.
La funzione è negativa per tutti i valori reali di x dove -6 <x <-2.
Qual è il dominio della funzione combinata h (x) = f (x) - g (x), se il dominio di f (x) = (4,4.5] e il dominio di g (x) è [4, 4.5 )?
Il dominio è D_ {f-g} = (4,4.5). Vedi la spiegazione. (f-g) (x) può essere calcolato solo per quelli x, per i quali sono definiti sia f che g. Quindi possiamo scrivere che: D_ {f-g} = D_fnnD_g Qui abbiamo D_ {f-g} = (4,4.5] nn [4,4.5) = (4,4.5)
Quali sono le caratteristiche del grafico della funzione f (x) = (x + 1) ^ 2 + 2? Controlla tutte le applicazioni. Il dominio è tutti numeri reali. L'intervallo è tutti i numeri reali maggiori o uguali a 1. L'intercetta y è 3. Il grafico della funzione è 1 unità in alto e
Il primo e il terzo sono veri, il secondo è falso, il quarto non è finito. - Il dominio è in effetti tutti i numeri reali. Puoi riscrivere questa funzione come x ^ 2 + 2x + 3, che è un polinomio, e come tale ha dominio mathbb {R} L'intervallo non è tutto il numero reale maggiore o uguale a 1, perché il minimo è 2. In fatto. (x + 1) ^ 2 è una traslazione orizzontale (una unità a sinistra) della parabola "strandard" x ^ 2, che ha intervallo [0, infty). Quando aggiungi 2, il grafico viene spostato verticalmente di due unità, quindi l'intervallo you è [2,