Risposta:
La risposta è:
Spiegazione:
La regola del quoziente afferma che:
Poi:
Allo stesso modo per
Come differenziate f (x) = (tan (3x-2)) / (e ^ (1-x) -1) usando la regola del quoziente?
Vedi la risposta qui sotto:
Come differenziate f (x) = sinx / ln (cotx) usando la regola del quoziente?
Sotto
Come differenziate f (x) = x ^ 3sqrt (x-2) sinx usando la regola del prodotto?
F '(x) = 3x ^ 2sqrt (x-2) sinx + (x ^ 3sinx) / (2sqrt (x-2)) + x ^ 3sqrt (x-2) cosx Se f (x) = g (x) h (x) j (x), quindi f '(x) = g' (x) h (x) j (x) + g (x) h '(x) j (x) + g (x) h (x ) j '(x) g (x) = x ^ 3 g' (x) = 3x ^ 2 h (x) = sqrt (x-2) = (x-2) ^ (1/2) h '(x ) = 1/2 * (x-2) ^ (- 1/2) * d / dx [x-2] colore (bianco) (h '(x)) = (x-2) ^ (- 1/2 ) / 2 * 1 colore (bianco) (h '(x)) = (x-2) ^ (- 1/2) / 2 colore (bianco) (h' (x)) = 1 / (2sqrt (x- 2)) j (x) = sinx j '(x) = cosx f' (x) = 3x ^ 2sqrt (x-2) sinx + x ^ 3 1 / (2sqrt (x-2)) sinx + x ^ 3sqrt (x-2) cosx f '(x) = 3x ^ 2sq