Risposta:
La spiegazione è nelle immagini.
Spiegazione:
Risposta:
Spiegazione:
# X ^ 2 + ax + 3per (1) #
# Y = (x + 4) ^ 2 + BTO (2) #
# "espandibile" (2) "utilizzando FOIL" #
# Y = x ^ 2 + 8x + 16 + b #
#color (blu) "confronto coefficienti di termini simili" #
# AX- = 8xrArra = 8 #
# 16 + B- = 3rArrb = 3-16 = -13 #
# "l'equazione di una parabola nella" forma di vertice di colore (blu) "# è.
#color (rosso) (bar (ul (| colore (bianco) (2/2) colore (nero) (y = a (x-h) ^ 2 + k) colore (bianco) (2/2) |))) #
# "dove" (h, k) "sono le coordinate del vertice e un" #
# "è un moltiplicatore" #
# y = (x + 4) ^ 2-13colore (blu) "è in forma di vertice" #
#rArrcolor (magenta) "vertice" = (- 4, -13) larrcolor (blu) "punto di svolta" #
Il punto medio del segmento AB è (1, 4). Le coordinate del punto A sono (2, -3). Come trovi le coordinate del punto B?
Le coordinate del punto B sono (0,11) Punto medio di un segmento, i cui due punti finali sono A (x_1, y_1) e B (x_2, y_2) è ((x_1 + x_2) / 2, (y_1 + y_2) / 2) come A (x_1, y_1) è (2, -3), abbiamo x_1 = 2 e y_1 = -3 e un punto medio è (1,4), abbiamo (2 + x_2) / 2 = 1 cioè 2 + x_2 = 2 o x_2 = 0 (-3 + y_2) / 2 = 4 cioè -3 + y_2 = 8 o y_2 = 8 + 3 = 11 Quindi le coordinate del punto B sono (0,11)
Gregory disegnò un rettangolo ABCD su un piano di coordinate. Il punto A è a (0,0). Il punto B è a (9,0). Il punto C è a (9, -9). Il punto D è a (0, -9). Trova la lunghezza del CD laterale?
CD laterale = 9 unità Se ignoriamo le coordinate y (il secondo valore in ciascun punto), è facile capire che, poiché il CD laterale inizia da x = 9 e termina con x = 0, il valore assoluto è 9: | 0 - 9 | = 9 Ricorda che le soluzioni ai valori assoluti sono sempre positive Se non capisci perché questo è, puoi anche usare la formula della distanza: P_ "1" (9, -9) e P_ "2" (0, -9 ) Nella seguente equazione, P_ "1" è C e P_ "2" è D: sqrt ((x_ "2" -x_ "1") ^ 2+ (y_ "2" -y_ "1") ^ 2 sqrt ((0 - 9) ^ 2 + (-9 - (-9
P è il punto medio del segmento di linea AB. Le coordinate di P sono (5, -6). Le coordinate di A sono (-1,10).Come trovi le coordinate di B?
B = (x_2, y_2) = (11, -22) Se è noto un punto finale (x_1, y_1) e il punto medio (a, b) di un segmento di linea, allora possiamo usare la formula del punto medio per trova il secondo end-point (x_2, y_2). Come utilizzare la formula del punto medio per trovare un endpoint? (x_2, y_2) = (2a-x_1, 2b-y_1) Qui, (x_1, y_1) = (- 1, 10) e (a, b) = (5, -6) Quindi, (x_2, y_2) = (2colore (rosso) ((5)) -colore (rosso) ((-1)), 2colore (rosso) ((- 6)) - colore (rosso) 10) (x_2, y_2) = (10 + 1, -12-10) (x_2, y_2) = (11, -22) #