Risposta:
Spiegazione:
Factorizing di questa espressione algebrica si basa su questa proprietà:
presa
Applicando la proprietà di cui sopra abbiamo:
Applicando la stessa proprietà su
in tal modo,
Conoscendo l'identità pitagorica,
Perciò,
Risposta:
= - cos 2x
Spiegazione:
Promemoria:
Perciò:
Come fai a sapere se x ^ 2 + 8x + 16 è un trinomio quadrato perfetto e come lo consideri?
È un quadrato perfetto. Spiegazione sotto. I quadrati perfetti hanno forma (a + b) ^ 2 = a ^ 2 + 2ab + b ^ 2. Nei polinomi di x, il a-termine è sempre x. ((X + c) ^ 2 = x ^ 2 + 2cx + c ^ 2) x ^ 2 + 8x + 16 è il trinomio dato. Si noti che il primo termine e la costante sono entrambi quadrati perfetti: x ^ 2 è il quadrato di x e 16 è il quadrato di 4. Quindi troviamo che il primo e l'ultimo termine corrispondono alla nostra espansione. Ora dobbiamo controllare se il termine medio, 8x è del formato 2cx. Il termine medio è il doppio delle volte costanti x, quindi è 2xx4xxx = 8x. Ok,
Semplifica (-i sqrt 3) ^ 2. come si semplifica questo?
-3 Possiamo scrivere la funzione originale nella sua forma espansa come mostrato (-isqrt (3)) (- isqrt (3)) Trattiamo mi piace una variabile, e dal momento negativo un negativo è uguale a un positivo, e una radice quadrata volte una radice quadrata dello stesso numero è semplicemente quel numero, otteniamo la seguente equazione i ^ 2 * 3 Ricorda che i = sqrt (-1) e operando con la regola della radice quadrata mostrata sopra, possiamo semplificare come mostrato sotto -1 * 3 Ora è una questione di aritmetica -3 E c'è la tua risposta :)
Dimostra che Culla 4x (peccato 5 x + peccato 3 x) = Culla x (peccato 5 x - peccato 3 x)?
# sin a + sin b = 2 sin ((a + b) / 2) cos ((ab) / 2) sin a - sin b = 2 sin ((ab) / 2) cos ((a + b) / 2 ) Lato destro: lettino x (sin 5x - sin 3x) = lettino x cdot 2 sin ((5x-3x) / 2) cos ((5x + 3x) / 2) = cos x / sin x cdot 2 sin x cos 4x = 2 cos x cos 4x Lato sinistro: lettino (4x) (sin 5x + sin 3x) = lettino (4x) cdot 2 sin ((5x + 3x) / 2) cos ((5x-3x) / 2) = {cos 4x} / {sin 4x} cdot 2 sin 4x cos x = 2 cos x cos 4 x Sono uguali quad sqrt #