Risposta:
La distribuzione è una distribuzione esponenziale. k = 2 ed E (x) = 1/2, E (
Spiegazione:
Il limite della distribuzione è (0,
E (x) = # int_0 ^ Bx
Qual è la varianza di una distribuzione geometrica per una determinata probabilità?
La distribuzione geometrica con "probabilità di successo" = p significa = 1 / p varianza = (1-p) / p ^ 2 speranza che ha aiutato
Hai studiato il numero di persone che aspettano in fila alla tua banca venerdì pomeriggio alle 15:00 per molti anni e hai creato una distribuzione di probabilità per 0, 1, 2, 3 o 4 persone in fila. Le probabilità sono 0,1, 0,3, 0,4, 0,1 e 0,1, rispettivamente. Qual è la probabilità che al massimo 3 persone siano in linea alle 3 del pomeriggio di venerdì pomeriggio?
Al massimo 3 persone nella linea sarebbero. P (X = 0) + P (X = 1) + P (X = 2) + P (X = 3) = 0,1 + 0,3 + 0,4 + 0,1 = 0,9 Quindi P (X <= 3) = 0,9 Quindi la domanda sarebbe sia più facile usare la regola del complimento, poiché hai un valore a cui non sei interessato, in modo da poterlo allontanare dalla probabilità totale. come: P (X <= 3) = 1 - P (X> = 4) = 1 - P (X = 4) = 1 - 0,1 = 0,9 Quindi P (X <= 3) = 0,9
Hai studiato il numero di persone che aspettano in fila alla tua banca venerdì pomeriggio alle 15:00 per molti anni e hai creato una distribuzione di probabilità per 0, 1, 2, 3 o 4 persone in fila. Le probabilità sono 0,1, 0,3, 0,4, 0,1 e 0,1, rispettivamente. Qual è la probabilità che almeno 3 persone siano in linea alle 3 del pomeriggio di venerdì pomeriggio?
Questa è una QUALSIASI ... O situazione. Puoi AGGIUNGERE le probabilità. Le condizioni sono esclusive, ovvero: non puoi avere 3 e 4 persone in fila. Ci sono anche 3 persone O 4 persone in fila. Quindi aggiungi: P (3 o 4) = P (3) + P (4) = 0.1 + 0.1 = 0.2 Controlla la tua risposta (se hai tempo rimasto durante il test), calcolando la probabilità opposta: P (<3) = P (0) + P (1) + P (2) = 0,1 + 0,3 + 0,4 = 0,8 E questo e la tua risposta aggiungono fino a 1,0, come dovrebbero.