Qual è il vertice di y = (x + 6) (x + 4) -x + 12?

Qual è il vertice di y = (x + 6) (x + 4) -x + 12?
Anonim

Risposta:

#y_ {min} = 63/4 # a #x = - 9/2 #

Spiegazione:

#y = (x + 6) (x + 4) -x + 12 #

#y = x ^ 2 + 10x + 24 -x + 12 #

#y = x ^ 2 + 9x + 36 #

#y = (x + 9/2) ^ 2 - 81/4 + 36 #

#y = (x + 9/2) ^ 2 + 63/4 #

#y_ {min} = 63/4 # a #x = - 9/2 #

Risposta:

Il vertice è #(-9/2;63/4)#

Spiegazione:

riscriviamo l'equazione nella forma equivalente:

# Y = x ^ 2 + 4x + 6x + 24 x + 12 #

# Y = x ^ 2 + 9x + 36 #

Quindi cerchiamo le coordinate del vertice come segue:

# X_V = -b / (2a) #

dove a = 1; b = 9

così

# X_V = -9/2 #

e

# Y_V = f (-9/2) #

quello è

#y = (- 9/2) ^ 2 + 9 (-9/2) + 36 #

# Y = 81 / 4-81 / 2 + 36 #

# Y = (81-162 + 144) / 4 #

# Y = 63/4 #