Risposta:
Minimi locali. è #-2187/128.#
Minima globale#=-2187/128~=-17.09.#
Massimi globali #=64.#
Spiegazione:
Per extrema, #f '(x) = 0. #
#f '(x) = (x-2) * 3 (x-5) ^ 2 + (x-5) ^ 3 * 1 = (x-5) ^ 2 {3x-6 + x-5 = (4x-11) (x-5) ^ 2 #
#f '(x) = 0 rArr x = 5! in 1,4, # quindi non c'è bisogno di ulteriori considerazioni e # X = 11/4 #
#f '(x) = (4x-11) (x-5) ^ 2, rArr f' '(x) = (4x-11) * 2 (x-5) + (x-5) ^ 2 * 4 = 2 (x-5) {4x-11 + 2x-10} = 2 (x-5) (6x-21). #
Adesso, #f '' (11/4) = 2 (11 / 4-5) (33 / 2-21) = 2 (-9/4) (- 9/2)> 0, # mostrando ciò, #f (11/4) = (11 / 4-2) (11 / 4-5) ^ 3 = (3/2) (- 9/4) ^ 3 = -2187 / 128, # è Minimi locali.
Per trovare i valori globali, abbiamo bisogno #f (1) = (1-2) (1-5) ^ 3 = 64, # & #f (4) = (4-2) (4-5) ^ 3 = -2. #
Quindi, Minima globale # = Min # {minimi locali, #f (1), f (4)} = min {-2187 / 128,64, -2} = min {-17,09, 64, -2} = - 2187/128 ~ = -17,09 #
Massimi globali # = Max # {massimi locali (che non esiste), #f (1), f (4)} = max {64, -2} = 64. #