Risposta:
Grafico
Spiegazione:
L'equazione è in forma di intercettazione del pendio e intercetta su
Quindi la linea passa anche attraverso il quadrante IV.
Quindi grafico
L'unico quadrante che non contiene punti del grafico di y = -x ^ 2 + 8x - 18 è quale quadrante?
Il quadrante 1 e 2 non avranno punti di y = -x ^ 2 + 8x-18 Risolvi per il vertice y = -x ^ 2 + 8x-18 y = - (x ^ 2-8x + 16-16) -18 y = - (x-4) ^ 2 + 16-18 y + 2 = - (x-4) ^ 2 vertice a (4, -2) grafico {y = -x ^ 2 + 8x-18 [-20,40 , -25,10]} Dio benedica .... Spero che la spiegazione sia utile ..
Dimostra che data una linea e un punto non su quella linea, c'è esattamente una linea che passa attraverso quel punto perpendicolare attraverso quella linea? Puoi farlo matematicamente o attraverso la costruzione (gli antichi greci fecero)?
Vedi sotto. Supponiamo che la linea data sia AB e che il punto sia P, che non è su AB. Ora, supponiamo, abbiamo disegnato una PO perpendicolare su AB. Dobbiamo dimostrare che, Questo PO è l'unica linea che passa per P che è perpendicolare a AB. Ora, useremo una costruzione. Costruiamo un altro PC perpendicolare su AB dal punto P. Now The Proof. Abbiamo, OP perpendicolare AB [Non posso usare il segno perpendicolare, come annyoing] E, inoltre, PC perpendicolare AB. Quindi, OP || PC. [Entrambi sono perpendicolari sulla stessa linea.] Ora sia l'OP che il PC hanno il punto P in comune e sono paralleli. Ci
Disegna il grafico di y = 8 ^ x indicando le coordinate di tutti i punti in cui il grafico attraversa gli assi delle coordinate. Descrivi completamente la trasformazione che trasforma il grafico Y = 8 ^ x nel grafico y = 8 ^ (x + 1)?
Vedi sotto. Le funzioni esponenziali senza trasformazione verticale non attraversano mai l'asse x. In quanto tale, y = 8 ^ x non avrà intercettazioni x. Avrà un'interconnessione y in y (0) = 8 ^ 0 = 1. Il grafico dovrebbe essere simile al seguente. grafico {8 ^ x [-10, 10, -5, 5]} Il grafico di y = 8 ^ (x + 1) è il grafico di y = 8 ^ x sposta 1 unità a sinistra, in modo che sia y- intercettare ora giace a (0, 8). Vedrai anche che y (-1) = 1. grafico {8 ^ (x + 1) [-10, 10, -5, 5]} Speriamo che questo aiuti!