Risposta:
Dominio:
Spiegazione:
Fin dall'inizio, sai che il dominio della funzione deve includere solo valori di
In altre parole, è necessario escludere dal dominio della funzione qualsiasi valore di
#x - 3x ^ 2 <0 #
L'espressione sotto la radice quadrata può essere fattorizzata per dare
#x - 3x ^ 2 = x * (1 - 3x) #
Rendi questa espressione uguale a zero per trovare i valori di
#x * (1 - 3x) = 0 implica {(x = 0), (x = 1/3):} #
Quindi, in modo che questa espressione sia positivo, devi averlo
Ora, per
# {(x <0), (1 - 3x> 0):} implica x * (1-3x) <0 #
Allo stesso modo, per
# {(x> 0), (1 - 3x> 0):} implica x * (1-3x) <0 #
Ciò significa che gli unici valori di
Qualsiasi altro valore di
graph {sqrt (x-3x ^ 2) -0.466, 0.866, -0.289, 0.377}
Il dominio di f (x) è l'insieme di tutti i valori reali tranne 7, e il dominio di g (x) è l'insieme di tutti i valori reali eccetto -3. Qual è il dominio di (g * f) (x)?
Tutti i numeri reali tranne 7 e -3 quando moltiplichi due funzioni, cosa stiamo facendo? stiamo prendendo il valore f (x) e lo moltiplichiamo per il valore g (x), dove x deve essere lo stesso. Tuttavia entrambe le funzioni hanno restrizioni, 7 e -3, quindi il prodotto delle due funzioni deve avere * entrambe le restrizioni. Solitamente quando si eseguono operazioni sulle funzioni, se le funzioni precedenti (f (x) e g (x)) hanno delle restrizioni, vengono sempre considerate come parte della nuova restrizione della nuova funzione o della loro operazione. Puoi anche visualizzare questo facendo due funzioni razionali con diver
Che cosa è (sqrt (5+) sqrt (3)) / (sqrt (3+) sqrt (3+) sqrt (5)) - (sqrt (5) sqrt (3)) / (sqrt (3+) sqrt (3) sqrt (5))?
2/7 Prendiamo, A = (sqrt5 + sqrt3) / (sqrt3 + sqrt3 + sqrt5) - (sqrt5-sqrt3) / (sqrt3 + sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5 -sqrt3) / (2sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5-sqrt3) / (2sqrt3-sqrt5) = ((sqrt5 + sqrt3) (2sqrt3-sqrt5) - (sqrt5-sqrt3) ) (2sqrt3 + sqrt5)) / ((2sqrt3 + sqrt5) (2sqrt3-sqrt5) = ((2sqrt15-5 + 2 * 3-sqrt15) - (2sqrt15 + 5-2 * 3-sqrt15)) / ((2sqrt3) ^ 2- (sqrt5) ^ 2) = (cancel (2sqrt15) -5 + 2 * 3cancel (-sqrt15) - cancel (2sqrt15) -5 + 2 * 3 + cancel (sqrt15)) / (12-5) = ( -10 + 12) / 7 = 2/7 Si noti che, se nei denominatori sono (sqrt3 + sqrt (3 + sqrt5))
Qual è il dominio della funzione combinata h (x) = f (x) - g (x), se il dominio di f (x) = (4,4.5] e il dominio di g (x) è [4, 4.5 )?
Il dominio è D_ {f-g} = (4,4.5). Vedi la spiegazione. (f-g) (x) può essere calcolato solo per quelli x, per i quali sono definiti sia f che g. Quindi possiamo scrivere che: D_ {f-g} = D_fnnD_g Qui abbiamo D_ {f-g} = (4,4.5] nn [4,4.5) = (4,4.5)