La corrente di un fiume è di 2 miglia all'ora. Una barca viaggia fino a un punto 8 miglia a monte e di nuovo indietro in 3 ore. Qual è la velocità della barca in acqua ferma?

La corrente di un fiume è di 2 miglia all'ora. Una barca viaggia fino a un punto 8 miglia a monte e di nuovo indietro in 3 ore. Qual è la velocità della barca in acqua ferma?
Anonim

Risposta:

#3,737# miglia / ora.

Spiegazione:

Lascia che la velocità della barca sia ferma nell'acqua # V #.

Pertanto il trip totale è la somma della parte a monte e della parte a valle.

La distanza totale percorsa è quindi # X_t = 4m + 4m = 8m #

Ma dato che velocità = distanza / tempo, # X = vt #, quindi possiamo concludere

# v_T = x_T / t_T = 8/3 #mi / hr

e quindi scrivi:

# X_t = x_1 + x_2 #

#prima v_Tt_T = v_1t_1 + v_2t_2 #

#therefore 8/3 * 3 = (v-2) t_1 + (v + 2) t_2 #

Anche, # T_1 + t_2 = 3 #.

Inoltre, # t_1 = 4 / (v-2) e t_2 = 4 / (v + 2) #

# Therefore4 / (V-2) + 4 / (v + 2) = 3 #

#prima (4 (v + 2) +4 (v-2)) / ((v + 2) (v-2)) = 3 #

Questo porta all'equazione quadratica in v, # 3v ^ 2-8v-12 = 0 #, che al momento di risolvere i rendimenti # v = 3,737 o v = -1,07 #.

Chiaramente quest'ultimo è impossibile e quindi # V = 3.737 # è l'unica soluzione fattibile.