Risposta:
È lo stesso di
Spiegazione:
Ci sono diversi modi in cui questo può essere visto.
1) Razionalizza il denominatore:
2) Usa le proprietà degli esponenti:
3) Piazza:
Mostra che cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Sono un po 'confuso se creo Cos²4π / 10 = cos² (π-6π / 10) e cos²9π / 10 = cos² (π-π / 10), diventerà negativo come cos (180 ° -theta) = - costheta in il secondo quadrante. Come faccio a dimostrare la domanda?
Vedi sotto. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Cos'è sqrt {-sqrt3 + sqrt (3 + 8 sqrt (7 + 4 sqrt3?
Se si può usare una calcolatrice, la sua 2 Se non è consentito alcun calcolatore, allora si dovrebbe giocare con le leggi dei surds e usare la manipolazione algebrica per semplificarla. Va in questo modo: sqrt (7 + 4sqrt (3)) = sqrt (4 + 2 * 2sqrt (3) +3) = sqrt (2 ^ 2 + 2 * 2sqrt (3) + sqrt3 ^ 2) = sqrt ((2 + sqrt3) ^ 2) = 2 + sqrt3 {Questo sta usando l'identità (a + b) ^ 2 = a ^ 2 + b ^ 2 + 2ab} sqrt (3 + 8sqrt (7 + 4sqrt3)) = sqrt (3+ 8 * (2 + sqrt3)) = sqrt (3 + 16 + 8sqrt3) = sqrt (16 + 2 * 4sqrt3 + 3) = sqrt ((4 + sqrt3) ^ 2) = 4 + sqrt3 {Questa sta usando l'identità ( a + b) ^ 2 = a ^ 2 +
Scrivi il numero complesso (sqrt3 + i) / (sqrt3-i) in forma standard?
Color (maroon) (=> ((sqrt3 + i) / 2) ^ 2 Razionalizzando il denominatore, otteniamo la forma standard. (sqrt 3 + i) / (sqrt3 - i) Moltiplica e divide per (sqrt3 + i) => (sqrt3 + i) ^ 2 / ((sqrt3-i) * (sqrt3 + i)) => (sqrt3 + i) ^ 2 / (3 + 1) colore (indigo) (=> ((sqrt3 + i ) / 2) ^ 2