Vorrei iniziare convertendo il numero in forma trigonometrica:
La radice cubica di questo numero può essere scritta come:
Ora con questo in mente io uso la formula per l'ennesima potenza di un numero complesso in forma trigonometrica:
Quale in rettangolare è:
Non posso essere completamente d'accordo con la risposta di Gió, perché è incompleta e anche (formalmente) sbagliata.
L'errore formale è nell'uso di La formula di De Moivre con esponenti non interi. La formula di De Moivre può essere applicata solo agli esponenti interi. Maggiori dettagli su questo nella pagina di Wikipedia
Lì troverai un'estensione parziale della formula, da gestire
Uno (e in un certo senso il) La proprietà molto fondamentale dei numeri complessi è quella
Quindi le radici cubiche hanno tre soluzioni e trovare solo una di esse non è sufficiente: è solo "
Scriverò la mia proposta di soluzione di seguito. I commenti sono ben accetti!
Come Gió ha giustamente suggerito, il primo passo è esprimere
Così
Ora vuoi calcolare le radici. Con la formula riportata sopra, otteniamo:
dove
L'interpretazione geometrica della formula per il
Prima di tutto, possiamo notare che tutte le soluzioni hanno la stessa distanza
La "prima" radice corrisponde a
Tutte le altre radici possono essere ottenute da ciò aggiungendo l'angolo
Nel nostro caso:
dove è l'angolo blu
Qual è la forma semplificata di radice quadrata di 10 - radice quadrata di 5 su radice quadrata di 10 + radice quadrata di 5?
(sqrt (10) -sqrt (5)) / (sqrt (10) + sqrt (5) = 3-2sqrt (2) (sqrt (10) -sqrt (5)) / (sqrt (10) + sqrt (5 ) color (bianco) ("XXX") = cancel (sqrt (5)) / cancel (sqrt (5)) * (sqrt (2) -1) / (sqrt (2) +1) colore (bianco) (" XXX ") = (sqrt (2) -1) / (sqrt (2) +1) * (sqrt (2) -1) / (sqrt (2) -1) color (white) (" XXX ") = ( sqrt (2) -1) ^ 2 / ((sqrt (2) ^ 2-1 ^ 2) colore (bianco) ("XXX") = (2-2sqrt2 + 1) / (2-1) colore (bianco) ( "XXX") = 3-2sqrt (2)
Qual è la radice quadrata di 3 + la radice quadrata di 72 - la radice quadrata di 128 + la radice quadrata di 108?
7sqrt (3) - 2sqrt (2) sqrt (3) + sqrt (72) - sqrt (128) + sqrt (108) Sappiamo che 108 = 9 * 12 = 3 ^ 3 * 2 ^ 2, quindi sqrt (108) = sqrt (3 ^ 3 * 2 ^ 2) = 6sqrt (3) sqrt (3) + sqrt (72) - sqrt (128) + 6sqrt (3) Sappiamo che 72 = 9 * 8 = 3 ^ 2 * 2 ^ 3, quindi sqrt (72) = sqrt (3 ^ 2 * 2 ^ 3) = 6sqrt (2) sqrt (3) + 6sqrt (2) - sqrt (128) + 6sqrt (3) Sappiamo che 128 = 2 ^ 7 , quindi sqrt (128) = sqrt (2 ^ 6 * 2) = 8sqrt (2) sqrt (3) + 6sqrt (2) - 8sqrt (2) + 6sqrt (3) Semplificando 7sqrt (3) - 2sqrt (2)
Qual è la radice quadrata di 7 + radice quadrata di 7 ^ 2 + radice quadrata di 7 ^ 3 + radice quadrata di 7 ^ 4 + radice quadrata di 7 ^ 5?
Sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) La prima cosa che possiamo fare è cancellare le radici su quelle con i poteri pari. Poiché: sqrt (x ^ 2) = xe sqrt (x ^ 4) = x ^ 2 per qualsiasi numero, possiamo solo dire che sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) Ora, 7 ^ 3 può essere riscritto come 7 ^ 2 * 7, e che 7 ^ 2 può uscire dalla radice! Lo stesso vale per 7 ^ 5 ma è stato riscritto come 7 ^ 4 * 7 sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + 7sqrt (7)