La risposta è
In primo luogo, sottrarre
Inserisci il risultato nell'equazione originale:
Per dividere le frazioni, trasforma la seconda frazione nel suo reciproco e più le due frazioni. Reciproco di
Come si semplifica [ frac {2} {9} cdot frac {3} {10} - (- frac {2} {9} div frac {1} {3})] - frac { 2} {5}?
1/3 [2/9*3/10-(-2/9-:1/3)]-2/5 =[6/90-(-2/9*3/1)]-2/5 =[6/90+(2/9*3/1)]-2/5 =[6/90+6/9]-2/5 =[6/90+60/90]-2/5 =[66/90]-2/5 =66/90-36/90 =30/90 =1/3
Come si semplifica (1 / sqrt (a-1) + sqrt (a + 1)) / (1 / sqrt (a + 1) -1 / sqrt (a-1)) div sqrt (a + 1) / ( (a-1) sqrt (a + 1) - (a + 1) sqrt (a-1)), a> 1?
Ampia formattazione matematica ...> colore (blu) (((1 / sqrt (a-1) + sqrt (a + 1)) / (1 / sqrt (a + 1) -1 / sqrt (a-1)) ) / (sqrt (a + 1) / ((a-1) sqrt (a + 1) - (a + 1) sqrt (a-1))) = colore (rosso) (((1 / sqrt (a- 1) + sqrt (a + 1)) / ((sqrt (a-1) -sqrt (a + 1)) / (sqrt (a + 1) cdot sqrt (a-1)))) / (sqrt (a +1) / (sqrt (a-1) cdot sqrt (a-1) cdot sqrt (a + 1) -sqrt (a + 1) cdot sqrt (a + 1) sqrt (a-1))) = colore ( blu) (((1 / sqrt (a-1) + sqrt (a + 1)) / ((sqrt (a-1) -sqrt (a + 1)) / (sqrt (a + 1) cdot sqrt (a -1)))) / (sqrt (a + 1) / (sqrt (a + 1) cdot sqrt (a-1) (sqrt (a-1) -sqrt (a + 1))) = colore (rosso) ((1 / sqrt
Semplifica (-i sqrt 3) ^ 2. come si semplifica questo?
-3 Possiamo scrivere la funzione originale nella sua forma espansa come mostrato (-isqrt (3)) (- isqrt (3)) Trattiamo mi piace una variabile, e dal momento negativo un negativo è uguale a un positivo, e una radice quadrata volte una radice quadrata dello stesso numero è semplicemente quel numero, otteniamo la seguente equazione i ^ 2 * 3 Ricorda che i = sqrt (-1) e operando con la regola della radice quadrata mostrata sopra, possiamo semplificare come mostrato sotto -1 * 3 Ora è una questione di aritmetica -3 E c'è la tua risposta :)