Risposta:
# (1-3i) / sqrt (1 + 3i) #
# = (- 2sqrt ((sqrt (10) +1) / 2) + 3 / 2sqrt ((sqrt (10) -1) / 2)) - (2sqrt ((sqrt (10) -1) / 2) + 3 / 2sqrt ((sqrt (10) +1) / 2)) i #
Spiegazione:
In generale le radici quadrate di
# + - ((sqrt ((sqrt (a ^ 2 + b ^ 2) + a) / 2)) + (b / abs (b) sqrt ((sqrt (a ^ 2 + b ^ 2) -a) / 2)) i) #
Vedi:
In caso di
#sqrt (1 + 3i) #
# = sqrt ((sqrt (1 ^ 2 + 3 ^ 2) + 1) / 2) + sqrt ((sqrt (1 ^ 2 + 3 ^ 2) -1) / 2) i #
# = sqrt ((sqrt (10) +1) / 2) + sqrt ((sqrt (10) -1) / 2) i #
Così:
# (1-3i) / sqrt (1 + 3i) #
# = ((1-3i) sqrt (1 + 3i)) / (1 + 3i) #
# = ((1-3i) ^ 2 sqrt (1 + 3i)) / ((1 + 3i) (1-3i)) #
# = ((1-3i) ^ 2 sqrt (1 + 3i)) / 4 #
# = 1/4 (1-3i) ^ 2 (sqrt ((sqrt (10) +1) / 2) + sqrt ((sqrt (10) -1) / 2) i) #
# = 1/4 (-8-6i) (sqrt ((sqrt (10) +1) / 2) + sqrt ((sqrt (10) -1) / 2) i) #
# = - 1/2 (4 + 3i) (sqrt ((sqrt (10) +1) / 2) + sqrt ((sqrt (10) -1) / 2) i) #
# = - 1/2 ((4sqrt ((sqrt (10) +1) / 2) -3sqrt ((sqrt (10) -1) / 2)) + (4sqrt ((sqrt (10) -1) / 2) + 3sqrt ((sqrt (10) 1) / 2)) i) #
# = (- 2sqrt ((sqrt (10) +1) / 2) + 3 / 2sqrt ((sqrt (10) -1) / 2)) - (2sqrt ((sqrt (10) -1) / 2) + 3 / 2sqrt ((sqrt (10) +1) / 2)) i #
Che cosa equivale a 0.218 come frazione?
109/500 Qualsiasi decimale può sempre essere scritto come una frazione con un denominatore che è un potere di 10. 3 decimali significa che il valore del luogo è millesimi. 0.218 = 218/1000 Ora semplificalo nella sua forma più semplice. 218/1000 = 109/500
Che cosa equivale a 0.16 come frazione?
0.16 = 4/25 Per definizione, i decimali sono già frazioni, con i loro denominatori che sono potenze di 10. 0.16 = 16/100 "" larr ci sono 2 posizioni decimali rarr 2 zeri nella forma più semplice (16div4) / (100div4) = 4 / 25
Che cosa è (sqrt (5+) sqrt (3)) / (sqrt (3+) sqrt (3+) sqrt (5)) - (sqrt (5) sqrt (3)) / (sqrt (3+) sqrt (3) sqrt (5))?
2/7 Prendiamo, A = (sqrt5 + sqrt3) / (sqrt3 + sqrt3 + sqrt5) - (sqrt5-sqrt3) / (sqrt3 + sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5 -sqrt3) / (2sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5-sqrt3) / (2sqrt3-sqrt5) = ((sqrt5 + sqrt3) (2sqrt3-sqrt5) - (sqrt5-sqrt3) ) (2sqrt3 + sqrt5)) / ((2sqrt3 + sqrt5) (2sqrt3-sqrt5) = ((2sqrt15-5 + 2 * 3-sqrt15) - (2sqrt15 + 5-2 * 3-sqrt15)) / ((2sqrt3) ^ 2- (sqrt5) ^ 2) = (cancel (2sqrt15) -5 + 2 * 3cancel (-sqrt15) - cancel (2sqrt15) -5 + 2 * 3 + cancel (sqrt15)) / (12-5) = ( -10 + 12) / 7 = 2/7 Si noti che, se nei denominatori sono (sqrt3 + sqrt (3 + sqrt5))