Risposta:
Giove è
Spiegazione:
Per prima cosa dobbiamo definire "tempi più grandi". Definirò questo come il rapporto dei volumi approssimativi dei pianeti.
Supponendo che entrambi i pianeti siano sfere perfette:
Volume di Giove
Volume di Mercurio
Con la definizione di "tempi più grandi" sopra:
La circonferenza equatoriale della Terra è di circa 4 * 10 ^ 4 chilometri. La circonferenza equatoriale di Giove è di circa 439.263,8 chilometri. Quanto è grande la circonferenza di Giove rispetto alla Terra?
Basta dividere 439263.8 / 40000 = 10.98 La circonferenza di Giove è circa 11 volte maggiore della circonferenza della Terra.
Il raggio del cerchio più grande è due volte più lungo del raggio del cerchio più piccolo. L'area della ciambella è di 75 pi. Trova il raggio del cerchio più piccolo (interno).
Il raggio più piccolo è 5 Sia r = il raggio del cerchio interno. Quindi il raggio del cerchio più grande è 2r Dal riferimento otteniamo l'equazione per l'area di un anello: A = pi (R ^ 2-r ^ 2) Sostituto 2r per R: A = pi ((2r) ^ 2- r ^ 2) Semplifica: A = pi ((4r ^ 2- r ^ 2) A = 3pir ^ 2 Sostituisci nell'area specificata: 75pi = 3pir ^ 2 Divida entrambi i lati per 3pi: 25 = r ^ 2 r = 5
La densità del nucleo di un pianeta è rho_1 e quella del guscio esterno è rho_2. Il raggio del nucleo è R e quello del pianeta è 2R. Il campo gravitazionale sulla superficie esterna del pianeta è uguale alla superficie del nucleo, qual è il rapporto rho / rho_2. ?
3 Supponiamo che la massa del nucleo del pianeta sia m e quella del guscio esterno sia m 'Quindi, il campo sulla superficie del nucleo è (Gm) / R ^ 2 E, sulla superficie del guscio sarà (G (m + m ')) / (2R) ^ 2 Dato, entrambi sono uguali, quindi, (Gm) / R ^ 2 = (G (m + m')) / (2R) ^ 2 o, 4m = m + m 'or, m' = 3m Now, m = 4/3 pi R ^ 3 rho_1 (massa = volume * densità) e, m '= 4/3 pi ((2R) ^ 3 -R ^ 3) rho_2 = 4 / 3 pi 7R ^ 3 rho_2 Quindi, 3m = 3 (4/3 pi R ^ 3 rho_1) = m '= 4/3 pi 7R ^ 3 rho_2 Quindi, rho_1 = 7/3 rho_2 or, (rho_1) / (rho_2 ) = 7/3