Risposta:
Primo fattore:
Spiegazione:
GCF:
Prendi tutti i fattori comuni:
Dai un'occhiata:
LCM:
Prendi tutti i fattori al loro massimo livello:
Dai un'occhiata:
Mostra che cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Sono un po 'confuso se creo Cos²4π / 10 = cos² (π-6π / 10) e cos²9π / 10 = cos² (π-π / 10), diventerà negativo come cos (180 ° -theta) = - costheta in il secondo quadrante. Come faccio a dimostrare la domanda?
Vedi sotto. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Il prezzo per il biglietto per un bambino per il circo è di $ 4,75 in meno rispetto al prezzo del biglietto per adulti. Se rappresenti il prezzo per il biglietto del bambino utilizzando la variabile x, come scriveresti l'espressione algebrica per il prezzo del biglietto per l'adulto?
Il biglietto per adulti costa $ x + $ 4,75 Le espressioni sembrano sempre più complicate quando si usano variabili o numeri grandi o strani. Usiamo valori più semplici come esempio per iniziare con ... Il prezzo del biglietto di un bambino è di colore (rosso) ($ 2) inferiore al biglietto di un adulto. Il biglietto per adulto costa quindi colore (rosso) ($ 2) in più rispetto a quello di un bambino. Se il prezzo del biglietto di un bambino è di colore (blu) ($ 5), il biglietto per un adulto costa colore (blu) ($ 5) colore (rosso) (+ $ 2) = $ 7 Ora fai di nuovo lo stesso, usando i valori reali .. Il p
Che cos'è GCF e LCM per 22xy ^ 2z ^ 2, 33x ^ 2yz ^ 2, 44x ^ 2yz?
GCF: 11xyz LCM: 132x ^ 2y ^ 2z ^ 2 GCF: Fondamentalmente troviamo le cose che tutte le cose hanno in comune. Per questo, possiamo vedere che tutti hanno almeno un x, uno y un z, quindi possiamo dire che xyz è un fattore, dividendoli tutti da esso, otteniamo 22yz, 33xz e 44x Ora, ricordate che 22 = 11 * 2, 33 = 11 * 3 e 44 = 11 * 4, quindi possiamo dire che 11 è anche un fattore comune Dividendoli tutti per 11xyz otteniamo 2yz, 3xz e 4x Non c'è più che possiamo calcolare, il GCF è 11xz LCM: Fondamentalmente vogliamo che il termine più piccolo che possiamo ottenere sia un multiplo di tutti e