Usando la legge di Wien, si può calcolare il picco negli spettri di emissione da un corpo nero ideale.
La costante di spostamento di Vienna
La temperatura corporea umana è circa
Questo mette il picco di radiazione nell'intervallo infrarosso. La visione umana può vedere lunghezze d'onda della luce rossa fino a circa 7.000 Angstrom. Le lunghezze d'onda dell'infrarosso sono generalmente definite tra 7.000 e 1.000.000 Angstrom.
Il perimetro di un triangolo è 29 mm. La lunghezza del primo lato è il doppio della lunghezza del secondo lato. La lunghezza del terzo lato è 5 in più rispetto alla lunghezza del secondo lato. Come trovi le lunghezze laterali del triangolo?
S_1 = 12 s_2 = 6 s_3 = 11 Il perimetro di un triangolo è la somma delle lunghezze di tutti i suoi lati. In questo caso, è dato che il perimetro è 29 mm. Quindi per questo caso: s_1 + s_2 + s_3 = 29 Quindi, risolvendo per la lunghezza dei lati, traduciamo le istruzioni nella forma data in equazione. "La lunghezza del 1 ° lato è il doppio della lunghezza del 2 ° lato" Per risolvere questo problema, assegniamo una variabile casuale a s_1 o s_2. Per questo esempio, vorrei che x sia la lunghezza del 2 ° lato per evitare di avere frazioni nella mia equazione. quindi sappiamo che: s_1
Il PERIMETRO di isoscele trapezoidali ABCD è pari a 80 cm. La lunghezza della linea AB è 4 volte più grande della lunghezza di una linea CD che è 2/5 la lunghezza della linea BC (o le linee che sono uguali in lunghezza). Qual è l'area del trapezio?
L'area del trapezio è 320 cm ^ 2. Lascia che il trapezio sia come mostrato di seguito: Qui, se assumiamo il lato più piccolo CD = ae il lato più grande AB = 4a e BC = a / (2/5) = (5a) / 2. Come tale BC = AD = (5a) / 2, CD = a e AB = 4a Quindi il perimetro è (5a) / 2xx2 + a + 4a = 10a Ma il perimetro è 80 cm. Quindi a = 8 cm. e due lati di paillel indicati con aeb sono di 8 cm. e 32 cm. Ora, disegniamo perpendicolari da C e D a AB, che forma due trianges angolati a destra identici, la cui ipotenusa è 5 / 2xx8 = 20 cm. e base è (4xx8-8) / 2 = 12 e quindi la sua altezza è sqrt (20 ^
Un'onda ha una frequenza di 62 Hz e una velocità di 25 m / s (a) Qual è la lunghezza d'onda di questa onda (b) Quanto dista l'onda in 20 secondi?
La lunghezza d'onda è di 0.403 m e percorre 500 m in 20 secondi. In questo caso possiamo usare l'equazione: v = flambda dove v è la velocità dell'onda in metri al secondo, f è la frequenza in hertz e lambda è la lunghezza d'onda in metri. Quindi per (a): 25 = 62 volte lambda lambda = (25/62) = 0,403 m Per (b) Velocità = (distanza) / (tempo) 25 = d / (20) Moltiplicare entrambi i lati per 20 per annullare la frazione . d = 500