Permettere
Dall'espressione binomiale, scrivi il termine generale. Lascia che questo termine sia il r + 1 il termine Ora semplificare questo termine generale. Se questo termine generale è un termine costante, allora non dovrebbe contenere la variabile X.
Scriviamo il termine generale del suddetto binomio.
semplificando, otteniamo,
Ora che questo termine è il termine costante,
Perciò,
=> 3-r = 0
=> r = 3
Quindi, il quarto termine nell'espansione è il termine costante. Inserendo r = 3 nel termine generale, otterremo il valore del termine costante.
Il 20 ° termine di una serie aritmetica è log20 e il 32 ° termine è log32. Esattamente un termine nella sequenza è un numero razionale. Qual è il numero razionale?
Il decimo termine è log10, che equivale a 1. Se il 20 ° termine è log 20 e il 32nd term è log32, ne consegue che il decimo termine è log10. Log10 = 1. 1 è un numero razionale. Quando un log è scritto senza una "base" (l'indice dopo il log), una base di 10 è implicita. Questo è noto come "registro comune". La base di registro 10 di 10 è uguale a 1, perché 10 alla prima potenza è una. Una cosa utile da ricordare è "la risposta a un log è l'esponente". Un numero razionale è un numero che può essere espresso co
Il primo e il secondo termine di una sequenza geometrica sono rispettivamente il primo e il terzo termine di una sequenza lineare. Il quarto termine della sequenza lineare è 10 e la somma dei suoi primi cinque termini è 60 Trova i primi cinque termini della sequenza lineare?
{16, 14, 12, 10, 8} Una tipica sequenza geometrica può essere rappresentata come c_0a, c_0a ^ 2, cdots, c_0a ^ k e una tipica sequenza aritmetica come c_0a, c_0a + Delta, c_0a + 2Delta, cdots, c_0a + kDelta Chiamando c_0 a come primo elemento per la sequenza geometrica abbiamo {(c_0 a ^ 2 = c_0a + 2Delta -> "Primo e secondo di GS sono il primo e il terzo di un LS"), (c_0a + 3Delta = 10- > "Il quarto termine della sequenza lineare è 10"), (5c_0a + 10Delta = 60 -> "La somma dei suoi primi cinque termini è 60"):} Risoluzione per c_0, a, Delta otteniamo c_0 = 64/3 , a = 3/4
Il quarto mandato di un AP è pari al triplo del settimo termine del doppio del termine. 1. Trova il primo termine e la differenza comune?
A = 2/13 d = -15/13 T_4 = 3 T_7 ......... (1) T_4 - 2T_3 = 1 ........ (2) T_n = a + (n- 1) d T_4 = a + 3d T_7 = a + 6d T_3 = a + 2d Sostituendo i valori nell'equazione (1), a + 3d = 3a + 18d = 2a + 15d = 0 .......... .... (3) Sostituendo i valori nell'equazione (2), a + 3d - (2a + 4d) = 1 = a + 3d - 2a - 4d = 1 -a -d = 1 a + d = -1. ........... (4) Nel risolvere le equazioni (3) e (4) contemporaneamente otteniamo, d = 2/13 a = -15/13