Risposta:
Spiegazione:
Permettere
Adesso,
Mostra che cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Sono un po 'confuso se creo Cos²4π / 10 = cos² (π-6π / 10) e cos²9π / 10 = cos² (π-π / 10), diventerà negativo come cos (180 ° -theta) = - costheta in il secondo quadrante. Come faccio a dimostrare la domanda?
Vedi sotto. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Numero di valori del parametro alfa in [0, 2pi] per cui la funzione quadratica, (sin alpha) x ^ 2 + 2 cos alpha x + 1/2 (cos alpha + sin alpha) è il quadrato di una funzione lineare è ? (A) 2 (B) 3 (C) 4 (D) 1
Vedi sotto. Se sappiamo che l'espressione deve essere il quadrato di una forma lineare allora (sin alpha) x ^ 2 + 2 cos alpha x + 1/2 (cos alpha + sin alpha) = (ax + b) ^ 2 quindi i coefficienti di raggruppamento noi avere (alpha ^ 2-sin (alpha)) x ^ 2 + (2ab-2cos alpha) x + b ^ 2-1 / 2 (sinalpha + cosalpha) = 0 quindi la condizione è {(a ^ 2-sin (alpha ) = 0), (ab-cos alpha = 0), (b ^ 2-1 / 2 (sinalpha + cosalpha) = 0):} Questo può essere risolto ottenendo prima i valori per a, b e sostituendo. Sappiamo che a ^ 2 + b ^ 2 = sin alpha + 1 / (sin alpha + cos alpha) e a ^ 2b ^ 2 = cos ^ 2 alpha Ora risolvendo z
Come si verifica [sin ^ 3 (B) + cos ^ 3 (B)] / [sin (B) + cos (B)] = 1-sin (B) cos (B)?
Prova sotto Espansione di a ^ 3 + b ^ 3 = (a + b) (a ^ 2-ab + b ^ 2), e possiamo usare questo: (sin ^ 3B + cos ^ 3B) / (sinB + cosB) = ((sinB + cosB) (sin ^ 2B-sinBcosB + cos ^ 2B)) / (sinB + cosB) = sin ^ 2B-sinBcosB + cos ^ 2B = sin ^ 2B + cos ^ 2B-sinBcosB (identità: sin ^ 2x + cos ^ 2x = 1) = 1-sinBcosB