Risposta:
Il volume aumenta di
Spiegazione:
Come il volume di un cilindro, per esempio
cioè aumenta da
Il volume aumenterà di
e quindi il volume aumenta di
L'altezza di un cilindro circolare di un dato volume varia inversamente al quadrato del raggio della base. Quante volte maggiore è il raggio di un cilindro alto 3 m rispetto al raggio di un cilindro alto 6 m con lo stesso volume?
Il raggio del cilindro di 3 m di altezza è 2 volte più grande di quello del cilindro alto 6 m. Sia h_1 = 3 m l'altezza e r_1 il raggio del 1 ° cilindro. Sia h_2 = 6m l'altezza e r_2 il raggio del secondo cilindro. Il volume dei cilindri è uguale. h prop 1 / r ^ 2:. h = k * 1 / r ^ 2 o h * r ^ 2 = k:. h_1 * r_1 ^ 2 = h_2 * r_2 ^ 2 3 * r_1 ^ 2 = 6 * r_2 ^ 2 o (r_1 / r_2) ^ 2 = 2 o r_1 / r_2 = sqrt2 o r_1 = sqrt2 * r_2 Il raggio del cilindro di 3 m alto è sqrt2 volte maggiore di quello del cilindro alto 6 m [Ans]
La lunghezza di ciascun lato del quadrato A viene aumentata del 100% per formare il quadrato B. Quindi ogni lato del quadrato viene aumentato del 50% per creare il quadrato C. Di quale percentuale è l'area del quadrato C maggiore della somma delle aree di quadrato A e B?
L'area di C è maggiore dell'80% dell'area dell'area A + di B Definisce come unità di misura la lunghezza di un lato di A. Area di A = 1 ^ 2 = 1 sq.unit Lunghezza dei lati di B è 100% in più della lunghezza dei lati di A rarr Lunghezza dei lati di B = 2 unità Area di B = 2 ^ 2 = 4 sq.units. Lunghezza dei lati di C è 50% in più della lunghezza dei lati di B rarr Lunghezza dei lati di C = 3 unità Area di C = 3 ^ 2 = 9 sq.units Area di C è 9- (1 + 4) = 4 sq.units maggiore delle aree combinate di A e B. 4 sq.units rappresenta 4 / (1 + 4) = 4/5 dell'area combinata
La coppia ordinata (1.5, 6) è una soluzione di variazione diretta, come si scrive l'equazione della variazione diretta? Rappresenta la variazione inversa. Rappresenta la variazione diretta. Non rappresenta neanche.?
Se (x, y) rappresenta una soluzione di variazione diretta allora y = m * x per qualche costante m Data la coppia (1.5,6) abbiamo 6 = m * (1.5) rarr m = 4 e l'equazione di variazione diretta è y = 4x Se (x, y) rappresenta una soluzione di variazione inversa allora y = m / x per qualche costante m Data la coppia (1.5,6) abbiamo 6 = m / 1.5 rarr m = 9 e l'equazione di variazione inversa è y = 9 / x Qualsiasi equazione che non può essere riscritta come una delle precedenti non è né un'equazione di variazione diretta né una inversa. Ad esempio y = x + 2 non è né l'uno n