Risposta:
Non ci sono soluzioni.
Spiegazione:
L'equazione fornita può essere riformata per dare:
Questo equivale a chiedere dove si intersecano due funzioni. Le funzioni in questo caso sono:
Solo osservando il grafico delle funzioni si chiarisce che i due non si intersecano mai:
graph {(y-sqrt (x-3)) (y-sqrt (x) +3) = 0 -10.97, 46.77, -9.94, 18.93}
È possibile notare che le funzioni sembrano avviarsi l'una verso l'altra
Che cosa è (sqrt (5+) sqrt (3)) / (sqrt (3+) sqrt (3+) sqrt (5)) - (sqrt (5) sqrt (3)) / (sqrt (3+) sqrt (3) sqrt (5))?
2/7 Prendiamo, A = (sqrt5 + sqrt3) / (sqrt3 + sqrt3 + sqrt5) - (sqrt5-sqrt3) / (sqrt3 + sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5 -sqrt3) / (2sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5-sqrt3) / (2sqrt3-sqrt5) = ((sqrt5 + sqrt3) (2sqrt3-sqrt5) - (sqrt5-sqrt3) ) (2sqrt3 + sqrt5)) / ((2sqrt3 + sqrt5) (2sqrt3-sqrt5) = ((2sqrt15-5 + 2 * 3-sqrt15) - (2sqrt15 + 5-2 * 3-sqrt15)) / ((2sqrt3) ^ 2- (sqrt5) ^ 2) = (cancel (2sqrt15) -5 + 2 * 3cancel (-sqrt15) - cancel (2sqrt15) -5 + 2 * 3 + cancel (sqrt15)) / (12-5) = ( -10 + 12) / 7 = 2/7 Si noti che, se nei denominatori sono (sqrt3 + sqrt (3 + sqrt5))
Come si semplifica (1 / sqrt (a-1) + sqrt (a + 1)) / (1 / sqrt (a + 1) -1 / sqrt (a-1)) div sqrt (a + 1) / ( (a-1) sqrt (a + 1) - (a + 1) sqrt (a-1)), a> 1?
Ampia formattazione matematica ...> colore (blu) (((1 / sqrt (a-1) + sqrt (a + 1)) / (1 / sqrt (a + 1) -1 / sqrt (a-1)) ) / (sqrt (a + 1) / ((a-1) sqrt (a + 1) - (a + 1) sqrt (a-1))) = colore (rosso) (((1 / sqrt (a- 1) + sqrt (a + 1)) / ((sqrt (a-1) -sqrt (a + 1)) / (sqrt (a + 1) cdot sqrt (a-1)))) / (sqrt (a +1) / (sqrt (a-1) cdot sqrt (a-1) cdot sqrt (a + 1) -sqrt (a + 1) cdot sqrt (a + 1) sqrt (a-1))) = colore ( blu) (((1 / sqrt (a-1) + sqrt (a + 1)) / ((sqrt (a-1) -sqrt (a + 1)) / (sqrt (a + 1) cdot sqrt (a -1)))) / (sqrt (a + 1) / (sqrt (a + 1) cdot sqrt (a-1) (sqrt (a-1) -sqrt (a + 1))) = colore (rosso) ((1 / sqrt
Come si risolve sqrt (x + 3) -sqrt x = sqrt (4x-5)?
X = 16/11 Questa è un'equazione difficile, quindi devi prima determinare il dominio di essa: x + 3> = 0 e x> 0 e 4x-5> = 0 x> = - 3 e x> 0 e x > = 5/4 => x> = 5/4 Il modo standard per risolvere questo tipo di equazioni è quello di quadrare i pacchi, ammettendo che: colore (rosso) (se a = b => a ^ 2 = b ^ 2) Tuttavia questo porta a soluzioni false, perché color (red) (if a = -b => a ^ 2 = b ^ 2) Quindi dobbiamo controllare le soluzioni dopo aver ottenuto i risultati. Quindi ora iniziamo: sqrt (x + 3) -sqrt (x) = sqrt (4x-5) (sqrt (x + 3) -sqrt (x)) ^ 2 = (sqrt (4x-5)) ^ 2 x +