Risposta:
# Y = e ^ 3 / 36x + e ^ 3/12 #
Spiegazione:
#f (x) = e ^ x / (x ^ 2-x) #
# D_F = {AAX ##nel## RR #! #: X ^ 2-x = 0} = (- oo, 0) uu (0,1) uu (1, + oo) = RR- {0,1} #
#f '(x) = (e ^ x / (x ^ 2-x))' = ((e ^ x) '(x ^ 2-x) -e ^ x (x ^ 2-x)') / (x ^ 2-x) ^ 2 = #
# (E ^ x (x ^ 2x) -e ^ x (2x-1)) / (x ^ 2x) ^ 2 = (x ^ 2e ^ x-xe ^ x-2XE ^ x + e ^ x) / (x ^ 2-x) ^ 2 = #
# (X ^ 2e ^ x-3XE ^ x + e ^ x) / (x ^ 2-x) ^ 2 #
Per l'equazione della linea tangente a #A (3, f (3)) # richiediamo i valori
#f (3) = e ^ 3/6 #
#f '(3) = (9e ^ 3-9e ^ 3 + e ^ 3) / 36 = e ^ 3/36 #
L'equazione sarà
# Y-f (3) = f '(3) (x-3) # #<=>#
# Y-e ^ 3/6 = e ^ 3/36 (x-3) # #<=>#
# Y-e ^ 3/6 = e ^ 3 / 36x-cancel (3) e ^ 3 / annullare (36) # #<=>#
# Y = e ^ 3 / 36x-e ^ 3/12 + e ^ 3/6 # #<=>#
# Y = e ^ 3 / 36x + e ^ 3/12 #
e un grafico