Risposta:
Spiegazione:
Valutare
Così
Ora dividi
Questo significa
Risposta:
Innanzitutto, converti in gradi (per molte persone, questi sono più convenienti con cui lavorare).
Spiegazione:
Il fattore di conversione tra radianti e gradi è
Ora, questo è un angolo speciale, che può essere trovato usando il triangoli speciali.
Ma prima, dobbiamo determinare l'angolo di riferimento di
Ora sappiamo che dobbiamo usare il
Ora, è solo questione di applicare la definizione di cos per trovare il rapporto trigonometrico desiderato.
Speriamo che questo aiuti!
Risposta:
Spiegazione:
Cerchio unità trigonometrica e tavola trigonometrica ->
Come si trova il valore esatto di sin (cos ^ -1 (sqrt5 / 5))?
Sin (cos ^ -1 (sqrt (5) / 5)) = (2sqrt (5)) / 5 Lasciate cos ^ -1 (sqrt (5) / 5) = A quindi cosA = sqrt (5) / 5 e sinA = sqrt (1-cos ^ 2A) = sqrt (1- (sqrt (5) / 5) ^ 2) = (2sqrt (5)) / 5 rarrA = sin ^ -1 ((2sqrt (5)) / 5) Ora, sin (cos ^ -1 (sqrt (5) / 5)) = sin (sin ^ -1 ((2sqrt (5)) / 5)) = (2sqrt (5)) / 5
X.: 1. 3. 6. 7 P (X): 0.35. Y. 0,15. 0.2 Trova il valore di y? Trova la media (valore atteso)? Trova la deviazione standard?
Come si trova il valore esatto di tan [arc cos (-1/3)]?
Usa la trigonometrica Identity tan (theta) = sqrt ((1 / cos ^ 2 (theta) -1)) Risultato: tan [arccos (-1/3)] = colore (blu) (2sqrt (2)) Inizio da lasciando che arccos (-1/3) sia un angolo theta => arccos (-1/3) = theta => cos (theta) = - 1/3 Ciò significa che ora stiamo cercando tan (theta) Avanti, usare l'identità: cos ^ 2 (theta) + sin ^ 2 (theta) = 1 Dividi tutti e due i lati per cos ^ 2 (theta) per avere, 1 + tan ^ 2 (theta) = 1 / cos ^ 2 (theta) = > tan ^ 2 (theta) = 1 / cos ^ 2 (theta) -1 => tan (theta) = sqrt ((1 / cos ^ 2 (theta) -1)) Ricordiamo, abbiamo detto prima che cos (theta) = -1 / 3