Risposta:
I tre numeri pari consecutivi sono
Spiegazione:
Permettere
Pertanto gli altri due numeri interi consecutivi saranno:
Ci è stato detto
Tre numeri interi consecutivi possono essere rappresentati da n, n + 1 e n + 2. Se la somma di tre numeri interi consecutivi è 57, quali sono gli interi?
18,19,20 Sum è l'aggiunta del numero così la somma di n, n + 1 e n + 2 può essere rappresentata come, n + n + 1 + n + 2 = 57 3n + 3 = 57 3n = 54 n = 18 quindi il nostro primo intero è 18 (n) il nostro secondo è 19, (18 + 1) e il nostro terzo è 20, (18 + 2).
Tre numeri interi consecutivi hanno una somma di 258 Quali sono gli interi?
85,86,87 Gli interi consecutivi sono numeri che si susseguono senza spazi come: 3,4,5 o 16,17,18 Chiameremo il primo numero della serie N, il prossimo N + 1 perché è 1 maggiore di N e l'ultimo N + 2 perché è 2 maggiore di N. Sappiamo che la somma di tutti e tre i numeri è 258, quindi possiamo fare questa equazione: N + (N + 1) + ( N + 2) = 258 Aggiungi termini simili insieme, quindi semplifica: colore (blu) N + colore (blu) N + 1 + colore (blu) N + 2 = 258 colore (blu) "3N" + 3 = 258 3N = 255 N = 85 Il primo numero è 85, quindi i tre numeri interi consecutivi sono: 85,86,87
Conoscendo la formula alla somma degli N interi a) qual è la somma dei primi N interi consecutivi quadrati, Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1 ) ^ 2 + N ^ 2? b) Somma dei primi N interi cubici consecutivi Sigma_ (k = 1) ^ N k ^ 3?
Per S_k (n) = sum_ {i = 0} ^ ni ^ k S_1 (n) = (n (n + 1)) / 2 S_2 (n) = 1/6 n (1 + n) (1 + 2 n ) S_3 (n) = ((n + 1) ^ 4- (n + 1) -6S_2 (n) -4S_1 (n)) / 4 Abbiamo sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ ni ^ 3 + 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 0 = 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 solving per sum_ {i = 0} ^ ni ^ 2 sum_ {i = 0} ^ ni ^ 2 = (n + 1) ^ 3 / 3- (n + 1) / 3-sum_ {i = 0} ^ ni ma sum_ {i = 0} ^ ni = ((n + 1) n) / 2 so sum_ {i = 0} ^ ni ^ 2 = (n +1) ^ 3 / 3- (n + 1