Risposta:
io.
ii.
iii.
Spiegazione:
io. Lo sappiamo
Per il vettore di unità, abbiamo bisogno di una grandezza di 1, o
ii.
Così,
iii.
Un parallelogramma ha due serie di angoli uguali e opposti, quindi
Il vettore A ha una magnitudine di 10 e punti nella direzione x positiva. Il vettore B ha una grandezza di 15 e forma un angolo di 34 gradi con l'asse x positivo. Qual è la grandezza di A - B?
8.7343 unità. AB = A + (- B) = 10 / _0 ^ @ - 15 / _34 ^ @ = sqrt ((10-15cos34 ^ @) ^ 2+ (15sin34 ^ @) ^ 2) / _ tan ^ (- 1) ((- 15sin34 ^ @) / (10-15cos34 ^ @)) = 8.7343 / _73.808 ^ @. Quindi la magnitudine è solo 8.7343 unità.
Lascia che l'angolo tra due vettori diversi da zero A (vettore) e B (vettore) sia 120 (gradi) e sia risultante C (vettore). Quindi quale dei seguenti è (sono) corretto?
Opzione (b) bb A * bb B = abs bbA abs bbB cos (120 ^ o) = -1/2 abs bbA abs bbB bbC = bbA + bbB C ^ 2 = (bbA + bbB) * (bbA + bbB) = A ^ 2 + B ^ 2 + 2 bbA * bb B = A ^ 2 + B ^ 2 - abs bbA abs bbB qquad quadrato abs (bbA - bbB) ^ 2 = (bbA - bbB) * (bbA - bbB) = A ^ 2 + B ^ 2 - 2bbA * bbB = A ^ 2 + B ^ 2 + abs bbA abs bbB qquad triangolo abs (bbA - bbB) ^ 2 - C ^ 2 = triangolo - quadrato = 2 abs bbA abs bbB:. C ^ 2 lt abs (bbA - bbB) ^ 2, qquad bbA, bbB ne bb0:. abs bb C lt abs (bbA - bbB)
Sia vec (x) un vettore, tale che vec (x) = (-1, 1), "e let" R (θ) = [(costheta, -sintheta), (sintheta, costheta)], cioè Rotazione Operatore. Per theta = 3 / 4pi trova vec (y) = R (theta) vec (x)? Crea uno schizzo che mostri x, y e θ?
Questa risulta essere una rotazione in senso antiorario. Riuscite a indovinare di quanti gradi? Sia T: RR ^ 2 | -> RR ^ 2 sia una trasformazione lineare, dove T (vecx) = R (theta) vecx, R (theta) = [(costheta, -sintheta), (sintheta, costheta)], vecx = << -1,1 >>. Si noti che questa trasformazione era rappresentata dalla matrice di trasformazione R (theta). Ciò che significa è dato che R è la matrice di rotazione che rappresenta la trasformazione rotazionale, possiamo moltiplicare R per vecx per realizzare questa trasformazione. [(costheta, -sintheta), (sintheta, costheta)] xx << -1,1 >