Risposta:
Spiegazione:
Una linea parallela all'asse y, passa attraverso tutti i punti del piano con la stessa coordinata x. Per questo motivo è l'equazione.
#color (rosso) (bar (ul (| colore (bianco) (2/2) colore (nero) (x = c) colore (bianco) (2/2) |))) # dove c è il valore della coordinata x dei punti attraversati.
La linea passa attraverso il punto
# (Colore (rosso) (4), 2) #
# rArrx = 4 "è l'equazione" # graph {y-1000x + 4000 = 0 -10, 10, -5, 5}
Dimostra che data una linea e un punto non su quella linea, c'è esattamente una linea che passa attraverso quel punto perpendicolare attraverso quella linea? Puoi farlo matematicamente o attraverso la costruzione (gli antichi greci fecero)?
Vedi sotto. Supponiamo che la linea data sia AB e che il punto sia P, che non è su AB. Ora, supponiamo, abbiamo disegnato una PO perpendicolare su AB. Dobbiamo dimostrare che, Questo PO è l'unica linea che passa per P che è perpendicolare a AB. Ora, useremo una costruzione. Costruiamo un altro PC perpendicolare su AB dal punto P. Now The Proof. Abbiamo, OP perpendicolare AB [Non posso usare il segno perpendicolare, come annyoing] E, inoltre, PC perpendicolare AB. Quindi, OP || PC. [Entrambi sono perpendicolari sulla stessa linea.] Ora sia l'OP che il PC hanno il punto P in comune e sono paralleli. Ci
Come trovi tutti i punti sulla curva x ^ 2 + xy + y ^ 2 = 7 dove la linea tangente è parallela all'asse xe il punto in cui la linea tangente è parallela all'asse y?
La linea tangente è parallela all'asse x quando la pendenza (quindi dy / dx) è zero ed è parallela all'asse y quando la pendenza (di nuovo, dy / dx) passa a oo o -oo Inizieremo trovando dy / dx: x ^ 2 + xy + y ^ 2 = 7 d / dx (x ^ 2 + xy + y ^ 2) = d / dx (7) 2x + 1y + xdy / dx + 2y dy / dx = 0 dy / dx = - (2x + y) / (x + 2y) Ora, dy / dx = 0 quando il nuimeratore è 0, a condizione che questo non faccia anche il denominatore 0. 2x + y = 0 quando y = -2x Abbiamo ora due equazioni: x ^ 2 + xy + y ^ 2 = 7 y = -2x Solve (per sostituzione) x ^ 2 + x (-2x) + (-2x) ^ 2 = 7 x ^ 2 -2x ^ 2 + 4x ^ 2 = 7 3x
Se f (x) = 3x ^ 2 eg (x) = (x-9) / (x + 1) e x! = - 1, allora cosa sarebbe f (g (x)) uguale? g (f (x))? f ^ -1 (x)? Quale sarebbe il dominio, l'intervallo e gli zeri per f (x)? Quale sarebbe il dominio, l'intervallo e gli zeri per g (x)?
F (g (x)) = 3 ((x-9) / (x + 1)) ^ 2 g (f (x)) = (3x ^ 2-9) / (3x ^ 2 + 1) f ^ - 1 (x) = radice () (x / 3) D_f = {x in RR}, R_f = {f (x) in RR; f (x)> = 0} D_g = {x in RR; x! = - 1}, R_g = {g (x) in RR; g (x)! = 1}