Risposta:
Il dominio è
Spiegazione:
Il denominatore deve essere
Perciò,
Permettere
Risolvi questa disuguaglianza con una tabella dei segni
Perciò,
Il dominio è
grafico {(x + 0,75) / (sqrt (x ^ 2-9)) -36,53, 36,57, -18,27, 18,27}
Il dominio di f (x) è l'insieme di tutti i valori reali tranne 7, e il dominio di g (x) è l'insieme di tutti i valori reali eccetto -3. Qual è il dominio di (g * f) (x)?
Tutti i numeri reali tranne 7 e -3 quando moltiplichi due funzioni, cosa stiamo facendo? stiamo prendendo il valore f (x) e lo moltiplichiamo per il valore g (x), dove x deve essere lo stesso. Tuttavia entrambe le funzioni hanno restrizioni, 7 e -3, quindi il prodotto delle due funzioni deve avere * entrambe le restrizioni. Solitamente quando si eseguono operazioni sulle funzioni, se le funzioni precedenti (f (x) e g (x)) hanno delle restrizioni, vengono sempre considerate come parte della nuova restrizione della nuova funzione o della loro operazione. Puoi anche visualizzare questo facendo due funzioni razionali con diver
Che cosa è (sqrt (5+) sqrt (3)) / (sqrt (3+) sqrt (3+) sqrt (5)) - (sqrt (5) sqrt (3)) / (sqrt (3+) sqrt (3) sqrt (5))?
2/7 Prendiamo, A = (sqrt5 + sqrt3) / (sqrt3 + sqrt3 + sqrt5) - (sqrt5-sqrt3) / (sqrt3 + sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5 -sqrt3) / (2sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5-sqrt3) / (2sqrt3-sqrt5) = ((sqrt5 + sqrt3) (2sqrt3-sqrt5) - (sqrt5-sqrt3) ) (2sqrt3 + sqrt5)) / ((2sqrt3 + sqrt5) (2sqrt3-sqrt5) = ((2sqrt15-5 + 2 * 3-sqrt15) - (2sqrt15 + 5-2 * 3-sqrt15)) / ((2sqrt3) ^ 2- (sqrt5) ^ 2) = (cancel (2sqrt15) -5 + 2 * 3cancel (-sqrt15) - cancel (2sqrt15) -5 + 2 * 3 + cancel (sqrt15)) / (12-5) = ( -10 + 12) / 7 = 2/7 Si noti che, se nei denominatori sono (sqrt3 + sqrt (3 + sqrt5))
Se f (x) = 3x ^ 2 eg (x) = (x-9) / (x + 1) e x! = - 1, allora cosa sarebbe f (g (x)) uguale? g (f (x))? f ^ -1 (x)? Quale sarebbe il dominio, l'intervallo e gli zeri per f (x)? Quale sarebbe il dominio, l'intervallo e gli zeri per g (x)?
F (g (x)) = 3 ((x-9) / (x + 1)) ^ 2 g (f (x)) = (3x ^ 2-9) / (3x ^ 2 + 1) f ^ - 1 (x) = radice () (x / 3) D_f = {x in RR}, R_f = {f (x) in RR; f (x)> = 0} D_g = {x in RR; x! = - 1}, R_g = {g (x) in RR; g (x)! = 1}